These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 32167638)

  • 1. Quantitative Prediction of Aggregation-Induced Emission: A Full Quantum Mechanical Approach to the Optical Spectra.
    Zhang W; Liu J; Jin X; Gu X; Zeng XC; He X; Li H
    Angew Chem Int Ed Engl; 2020 Jul; 59(28):11550-11555. PubMed ID: 32167638
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fragment-Based Quantum Mechanical Calculation of Excited-State Properties of Fluorescent RNAs.
    Shen C; Wang X; He X
    Front Chem; 2021; 9():801062. PubMed ID: 35004616
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fragment quantum mechanical calculation of proteins and its applications.
    He X; Zhu T; Wang X; Liu J; Zhang JZ
    Acc Chem Res; 2014 Sep; 47(9):2748-57. PubMed ID: 24851673
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of Excited-State Properties of Oligoacene Crystals Using Fragment-Based Quantum Mechanical Method.
    Liu J; Sun H; Glover WJ; He X
    J Phys Chem A; 2019 Jul; 123(26):5407-5417. PubMed ID: 31187994
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fragment Quantum Mechanical Method for Large-Sized Ion-Water Clusters.
    Liu J; Qi LW; Zhang JZH; He X
    J Chem Theory Comput; 2017 May; 13(5):2021-2034. PubMed ID: 28379695
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accurate prediction of energetic properties of ionic liquid clusters using a fragment-based quantum mechanical method.
    Liu J; He X
    Phys Chem Chem Phys; 2017 Aug; 19(31):20657-20666. PubMed ID: 28737802
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Full QM Calculation of RNA Energy Using Electrostatically Embedded Generalized Molecular Fractionation with Conjugate Caps Method.
    Jin X; Zhang JZ; He X
    J Phys Chem A; 2017 Mar; 121(12):2503-2514. PubMed ID: 28264557
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aggregation-induced emission spectra of triphenylamine salicylaldehyde derivatives
    Zhang Q; Li Y; Cao Z; Zhu C
    RSC Adv; 2021 Nov; 11(59):37171-37180. PubMed ID: 35496419
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Restriction of intramolecular motions: the general mechanism behind aggregation-induced emission.
    Leung NL; Xie N; Yuan W; Liu Y; Wu Q; Peng Q; Miao Q; Lam JW; Tang BZ
    Chemistry; 2014 Nov; 20(47):15349-53. PubMed ID: 25303769
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantum chemical insights into the aggregation induced emission phenomena: a QM/MM study for pyrazine derivatives.
    Wu Q; Deng C; Peng Q; Niu Y; Shuai Z
    J Comput Chem; 2012 Sep; 33(23):1862-9. PubMed ID: 22622704
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrostatically embedded generalized molecular fractionation with conjugate caps method for full quantum mechanical calculation of protein energy.
    Wang X; Liu J; Zhang JZ; He X
    J Phys Chem A; 2013 Aug; 117(32):7149-61. PubMed ID: 23452268
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fragment quantum chemical approach to geometry optimization and vibrational spectrum calculation of proteins.
    Liu J; Zhang JZ; He X
    Phys Chem Chem Phys; 2016 Jan; 18(3):1864-75. PubMed ID: 26686896
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Restriction of photoinduced electron transfer as a mechanism for the aggregation-induced emission of a trityl-functionalised maleimide fluorophore.
    Chi W; Sun PP
    Phys Chem Chem Phys; 2023 Feb; 25(5):4193-4200. PubMed ID: 36655773
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Non-aromatic annulene-based aggregation-induced emission system via aromaticity reversal process.
    Zhao Z; Zheng X; Du L; Xiong Y; He W; Gao X; Li C; Liu Y; Xu B; Zhang J; Song F; Yu Y; Zhao X; Cai Y; He X; Kwok RTK; Lam JWY; Huang X; Lee Phillips D; Wang H; Tang BZ
    Nat Commun; 2019 Jul; 10(1):2952. PubMed ID: 31273202
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aggregation-Induced Emission (AIE) Dots: Emerging Theranostic Nanolights.
    Feng G; Liu B
    Acc Chem Res; 2018 Jun; 51(6):1404-1414. PubMed ID: 29733571
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unraveling the aggregation effect on amorphous phase AIE luminogens: a computational study.
    Zheng X; Peng Q; Zhu L; Xie Y; Huang X; Shuai Z
    Nanoscale; 2016 Aug; 8(33):15173-80. PubMed ID: 27417250
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deciphering the Mechanism of Aggregation-Induced Emission of a Quinazolinone Derivative Displaying Excited-State Intramolecular Proton-Transfer Properties: A QM, QM/MM, and MD Study.
    Wang H; Gong Q; Wang G; Dang J; Liu F
    J Chem Theory Comput; 2019 Oct; 15(10):5440-5447. PubMed ID: 31436414
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantum mechanical fragment methods based on partitioning atoms or partitioning coordinates.
    Wang B; Yang KR; Xu X; Isegawa M; Leverentz HR; Truhlar DG
    Acc Chem Res; 2014 Sep; 47(9):2731-8. PubMed ID: 24841937
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highlights on the Road towards Highly Emitting Solid-State Luminophores: Two Classes of Thiazole-Based Organoboron Fluorophores with the AIEE/AIE Effect.
    Lugovik KI; Eltyshev AK; Suntsova PO; Slepukhin PA; Benassi E; Belskaya NP
    Chem Asian J; 2018 Feb; 13(3):311-324. PubMed ID: 29240295
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioprobes based on AIE fluorogens.
    Ding D; Li K; Liu B; Tang BZ
    Acc Chem Res; 2013 Nov; 46(11):2441-53. PubMed ID: 23742638
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.