These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
245 related articles for article (PubMed ID: 32167652)
21. MetNet: Computer-aided segmentation of brain metastases in post-contrast T1-weighted magnetic resonance imaging. Zhou Z; Sanders JW; Johnson JM; Gule-Monroe M; Chen M; Briere TM; Wang Y; Son JB; Pagel MD; Ma J; Li J Radiother Oncol; 2020 Dec; 153():189-196. PubMed ID: 32937104 [TBL] [Abstract][Full Text] [Related]
22. Automated Detection and Segmentation of Brain Metastases in Malignant Melanoma: Evaluation of a Dedicated Deep Learning Model. Pennig L; Shahzad R; Caldeira L; Lennartz S; Thiele F; Goertz L; Zopfs D; Meißner AK; Fürtjes G; Perkuhn M; Kabbasch C; Grau S; Borggrefe J; Laukamp KR AJNR Am J Neuroradiol; 2021 Apr; 42(4):655-662. PubMed ID: 33541907 [TBL] [Abstract][Full Text] [Related]
23. Deep neural network-based computer-assisted detection of cerebral aneurysms in MR angiography. Nakao T; Hanaoka S; Nomura Y; Sato I; Nemoto M; Miki S; Maeda E; Yoshikawa T; Hayashi N; Abe O J Magn Reson Imaging; 2018 Apr; 47(4):948-953. PubMed ID: 28836310 [TBL] [Abstract][Full Text] [Related]
24. Predicting motor outcome in preterm infants from very early brain diffusion MRI using a deep learning convolutional neural network (CNN) model. Saha S; Pagnozzi A; Bourgeat P; George JM; Bradford D; Colditz PB; Boyd RN; Rose SE; Fripp J; Pannek K Neuroimage; 2020 Jul; 215():116807. PubMed ID: 32278897 [TBL] [Abstract][Full Text] [Related]
25. Automated Brain Metastases Detection Framework for T1-Weighted Contrast-Enhanced 3D MRI. Dikici E; Ryu JL; Demirer M; Bigelow M; White RD; Slone W; Erdal BS; Prevedello LM IEEE J Biomed Health Inform; 2020 Oct; 24(10):2883-2893. PubMed ID: 32203040 [TBL] [Abstract][Full Text] [Related]
26. 3D convolutional neural networks for detection and severity staging of meniscus and PFJ cartilage morphological degenerative changes in osteoarthritis and anterior cruciate ligament subjects. Pedoia V; Norman B; Mehany SN; Bucknor MD; Link TM; Majumdar S J Magn Reson Imaging; 2019 Feb; 49(2):400-410. PubMed ID: 30306701 [TBL] [Abstract][Full Text] [Related]
27. Deep learning-based algorithm improved radiologists' performance in bone metastases detection on CT. Noguchi S; Nishio M; Sakamoto R; Yakami M; Fujimoto K; Emoto Y; Kubo T; Iizuka Y; Nakagomi K; Miyasa K; Satoh K; Nakamoto Y Eur Radiol; 2022 Nov; 32(11):7976-7987. PubMed ID: 35394186 [TBL] [Abstract][Full Text] [Related]
28. Development and Evaluation of Machine Learning in Whole-Body Magnetic Resonance Imaging for Detecting Metastases in Patients With Lung or Colon Cancer: A Diagnostic Test Accuracy Study. Rockall AG; Li X; Johnson N; Lavdas I; Santhakumaran S; Prevost AT; Punwani S; Goh V; Barwick TD; Bharwani N; Sandhu A; Sidhu H; Plumb A; Burn J; Fagan A; Wengert GJ; Koh DM; Reczko K; Dou Q; Warwick J; Liu X; Messiou C; Tunariu N; Boavida P; Soneji N; Johnston EW; Kelly-Morland C; De Paepe KN; Sokhi H; Wallitt K; Lakhani A; Russell J; Salib M; Vinnicombe S; Haq A; Aboagye EO; Taylor S; Glocker B Invest Radiol; 2023 Dec; 58(12):823-831. PubMed ID: 37358356 [TBL] [Abstract][Full Text] [Related]
29. Feature-fusion improves MRI single-shot deep learning detection of small brain metastases. Amemiya S; Takao H; Kato S; Yamashita H; Sakamoto N; Abe O J Neuroimaging; 2022 Jan; 32(1):111-119. PubMed ID: 34388855 [TBL] [Abstract][Full Text] [Related]
30. [Application of convolutional neural network to risk evaluation of positive circumferential resection margin of rectal cancer by magnetic resonance imaging]. Xu JH; Zhou XM; Ma JL; Liu SS; Zhang MS; Zheng XF; Zhang XY; Liu GW; Zhang XX; Lu Y; Wang DS Zhonghua Wei Chang Wai Ke Za Zhi; 2020 Jun; 23(6):572-577. PubMed ID: 32521977 [No Abstract] [Full Text] [Related]
31. Automatic T Staging Using Weakly Supervised Deep Learning for Nasopharyngeal Carcinoma on MR Images. Yang Q; Guo Y; Ou X; Wang J; Hu C J Magn Reson Imaging; 2020 Oct; 52(4):1074-1082. PubMed ID: 32583578 [TBL] [Abstract][Full Text] [Related]
32. Differentiation between glioblastoma, brain metastasis and subtypes using radiomics analysis. Artzi M; Bressler I; Ben Bashat D J Magn Reson Imaging; 2019 Aug; 50(2):519-528. PubMed ID: 30635952 [TBL] [Abstract][Full Text] [Related]
33. Deep Learning Based on MRI for Differentiation of Low- and High-Grade in Low-Stage Renal Cell Carcinoma. Zhao Y; Chang M; Wang R; Xi IL; Chang K; Huang RY; Vallières M; Habibollahi P; Dagli MS; Palmer M; Zhang PJ; Silva AC; Yang L; Soulen MC; Zhang Z; Bai HX; Stavropoulos SW J Magn Reson Imaging; 2020 Nov; 52(5):1542-1549. PubMed ID: 32222054 [TBL] [Abstract][Full Text] [Related]
34. More advantages in detecting bone and soft tissue metastases from prostate cancer using Pianou NK; Stavrou PZ; Vlontzou E; Rondogianni P; Exarhos DN; Datseris IE Hell J Nucl Med; 2019; 22(1):6-9. PubMed ID: 30843003 [TBL] [Abstract][Full Text] [Related]
35. Automatic segmentation of brain metastases using T1 magnetic resonance and computed tomography images. Hsu DG; Ballangrud Å; Shamseddine A; Deasy JO; Veeraraghavan H; Cervino L; Beal K; Aristophanous M Phys Med Biol; 2021 Aug; 66(17):. PubMed ID: 34315148 [TBL] [Abstract][Full Text] [Related]
36. Diagnosis of Benign and Malignant Breast Lesions on DCE-MRI by Using Radiomics and Deep Learning With Consideration of Peritumor Tissue. Zhou J; Zhang Y; Chang KT; Lee KE; Wang O; Li J; Lin Y; Pan Z; Chang P; Chow D; Wang M; Su MY J Magn Reson Imaging; 2020 Mar; 51(3):798-809. PubMed ID: 31675151 [TBL] [Abstract][Full Text] [Related]
37. Deep learning enables reduced gadolinium dose for contrast-enhanced brain MRI. Gong E; Pauly JM; Wintermark M; Zaharchuk G J Magn Reson Imaging; 2018 Aug; 48(2):330-340. PubMed ID: 29437269 [TBL] [Abstract][Full Text] [Related]
38. A Deep Learning Approach for MRI in the Diagnosis of Labral Injuries of the Hip Joint. Ni M; Wen X; Chen W; Zhao Y; Yuan Y; Zeng P; Wang Q; Wang Y; Yuan H J Magn Reson Imaging; 2022 Aug; 56(2):625-634. PubMed ID: 35081273 [TBL] [Abstract][Full Text] [Related]
39. Deep Learning Model for Automated Detection and Classification of Central Canal, Lateral Recess, and Neural Foraminal Stenosis at Lumbar Spine MRI. Hallinan JTPD; Zhu L; Yang K; Makmur A; Algazwi DAR; Thian YL; Lau S; Choo YS; Eide SE; Yap QV; Chan YH; Tan JH; Kumar N; Ooi BC; Yoshioka H; Quek ST Radiology; 2021 Jul; 300(1):130-138. PubMed ID: 33973835 [TBL] [Abstract][Full Text] [Related]
40. Brain MRI analysis using a deep learning based evolutionary approach. Shahamat H; Saniee Abadeh M Neural Netw; 2020 Jun; 126():218-234. PubMed ID: 32259762 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]