These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 32167739)
1. Enhanced Thermal Buffering of Phase Change Materials by the Intramicrocapsule Sub per Mille CNT Dopant. Mikhaylov AA; Sladkevich S; Medvedev AG; Prikhodchenko PV; Gun J; Sakharov KA; Xu ZJ; Kulish V; Nikolaev VA; Lev O ACS Appl Mater Interfaces; 2020 Apr; 12(14):16227-16235. PubMed ID: 32167739 [TBL] [Abstract][Full Text] [Related]
2. Application of carbon nanotube prepared from waste plastic to phase change materials: The potential for battery thermal management. Wang Y; Bailey J; Zhu Y; Zhang Y; Boetcher SKS; Li Y; Wu C Waste Manag; 2022 Dec; 154():96-104. PubMed ID: 36228331 [TBL] [Abstract][Full Text] [Related]
3. Design, Development and Evaluation of Thermal Properties of Polysulphone-CNT/GNP Nanocomposites. Irshad HM; Hakeem AS; Raza K; Baroud TN; Ehsan MA; Ali S; Tahir MS Nanomaterials (Basel); 2021 Aug; 11(8):. PubMed ID: 34443911 [TBL] [Abstract][Full Text] [Related]
4. Thermal and Mechanical Properties of Expanded Graphite/Paraffin Gypsum-Based Composite Material Reinforced by Carbon Fiber. Zhang B; Tian Y; Jin X; Lo TY; Cui H Materials (Basel); 2018 Nov; 11(11):. PubMed ID: 30405038 [TBL] [Abstract][Full Text] [Related]
5. Microstructure and Thermal Conductivity of Carbon Nanotube Reinforced Cu Composites. Chen P; Zhang J; Shen Q; Luo G; Dai Y; Wang C; Li M; Zhang L J Nanosci Nanotechnol; 2017 Apr; 17(4):2447-452. PubMed ID: 29648750 [TBL] [Abstract][Full Text] [Related]
6. Cellulose nanofibril/carbon nanotube composite foam-stabilized paraffin phase change material for thermal energy storage and conversion. Shen Z; Kwon S; Lee HL; Toivakka M; Oh K Carbohydr Polym; 2021 Dec; 273():118585. PubMed ID: 34560986 [TBL] [Abstract][Full Text] [Related]
7. Polypyrrole coated carbon nanotube aerogel composite phase change materials with enhanced thermal conductivity, high solar-/electro- thermal energy conversion and storage. Tao Z; Zou H; Li M; Ren S; Xu J; Lin J; Yang M; Feng Y; Wang G J Colloid Interface Sci; 2023 Jan; 629(Pt B):632-643. PubMed ID: 36183644 [TBL] [Abstract][Full Text] [Related]
8. Continuous Carbon Nanotube-Ultrathin Graphite Hybrid Foams for Increased Thermal Conductivity and Suppressed Subcooling in Composite Phase Change Materials. Kholmanov I; Kim J; Ou E; Ruoff RS; Shi L ACS Nano; 2015 Dec; 9(12):11699-707. PubMed ID: 26529570 [TBL] [Abstract][Full Text] [Related]
9. Enhancement of the Thermal Performance of the Paraffin-Based Microcapsules Intended for Textile Applications. Skurkyte-Papieviene V; Abraitiene A; Sankauskaite A; Rubeziene V; Baltusnikaite-Guzaitiene J Polymers (Basel); 2021 Apr; 13(7):. PubMed ID: 33915925 [TBL] [Abstract][Full Text] [Related]
10. Construction of Three-Dimensional Network Structure in Polyethylene-EPDM-Based Phase Change Materials by Carbon Nanotube with Enhanced Thermal Conductivity, Mechanical Property and Photo-Thermal Conversion Performance. He Y; Chen Y; Liu C; Huang L; Huang C; Lu J; Huang H Polymers (Basel); 2022 Jun; 14(11):. PubMed ID: 35683956 [TBL] [Abstract][Full Text] [Related]
11. Effect of Surface Functionalization and Physical Properties of Nanoinclusions on Thermal Conductivity Enhancement in an Organic Phase Change Material. Mishra AK; Lahiri BB; Philip J ACS Omega; 2018 Aug; 3(8):9487-9504. PubMed ID: 31459082 [TBL] [Abstract][Full Text] [Related]
12. Dynamic heat transfer and thermal performance evaluation of PCM-doped hybrid hollow plaster panels for buildings. Wi S; Yang S; Lee J; Chang SJ; Kim S J Hazard Mater; 2019 Jul; 374():428-436. PubMed ID: 31055143 [TBL] [Abstract][Full Text] [Related]
13. N-Doped yolk-shell carbon nanotube composite for enhanced electrochemical performance in a supercapacitor. Du J; Liu L; Wu H; Chen A Nanoscale; 2019 Dec; 11(47):22796-22803. PubMed ID: 31748771 [TBL] [Abstract][Full Text] [Related]
14. Fabrication of Thermal Conductivity Enhanced Polymer Composites by Constructing an Oriented Three-Dimensional Staggered Interconnected Network of Boron Nitride Platelets and Carbon Nanotubes. Su Z; Wang H; He J; Guo Y; Qu Q; Tian X ACS Appl Mater Interfaces; 2018 Oct; 10(42):36342-36351. PubMed ID: 30264559 [TBL] [Abstract][Full Text] [Related]
15. Carbon nanotube/paraffin/montmorillonite composite phase change material for thermal energy storage. Li M; Guo Q; Nutt S Sol Energy; 2017 Apr; 146():1-7. PubMed ID: 28579647 [TBL] [Abstract][Full Text] [Related]
16. Solar Salt with Carbon Nanotubes as a Potential Phase Change Material for High-Temperature Applications: Investigations on Thermal Properties and Chemical Stability. Vigneshwaran P; Shaik S; Suresh S; Abbas M; Saleel CA; Cuce E ACS Omega; 2023 May; 8(20):17563-17572. PubMed ID: 37251134 [TBL] [Abstract][Full Text] [Related]
17. Property-enhanced paraffin-based composite phase change material for thermal energy storage: a review. Mishra DK; Bhowmik C; Bhowmik S; Pandey KM Environ Sci Pollut Res Int; 2022 Jun; 29(29):43556-43587. PubMed ID: 35397031 [TBL] [Abstract][Full Text] [Related]
18. A newly designed paraffin@VO Cheng T; Wang N; Wang H; Sun R; Wong CP J Colloid Interface Sci; 2020 Feb; 559():226-235. PubMed ID: 31629276 [TBL] [Abstract][Full Text] [Related]
19. Capric Acid Hybridizing Fly Ash and Carbon Nanotubes as a Novel Shape-Stabilized Phase Change Material for Thermal Energy Storage. Liu P; Gu X; Zhang Z; Rao J; Shi J; Wang B; Bian L ACS Omega; 2019 Sep; 4(12):14962-14969. PubMed ID: 31552337 [TBL] [Abstract][Full Text] [Related]
20. Enhanced thermal properties with graphene oxide in the urea-formaldehyde microcapsules containing paraffin PCMs. Qiao Z; Mao J J Microencapsul; 2017 Feb; 34(1):1-9. PubMed ID: 27903088 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]