These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 32167743)

  • 41. Serum-borne bioactivity caused by pulmonary multiwalled carbon nanotubes induces neuroinflammation via blood-brain barrier impairment.
    Aragon MJ; Topper L; Tyler CR; Sanchez B; Zychowski K; Young T; Herbert G; Hall P; Erdely A; Eye T; Bishop L; Saunders SA; Muldoon PP; Ottens AK; Campen MJ
    Proc Natl Acad Sci U S A; 2017 Mar; 114(10):E1968-E1976. PubMed ID: 28223486
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Long-term polarization of alveolar macrophages to a profibrotic phenotype after inhalation exposure to multi-wall carbon nanotubes.
    Otsuka K; Yamada K; Taquahashi Y; Arakaki R; Ushio A; Saito M; Yamada A; Tsunematsu T; Kudo Y; Kanno J; Ishimaru N
    PLoS One; 2018; 13(10):e0205702. PubMed ID: 30372450
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Mechanisms of lung fibrosis induced by carbon nanotubes: towards an Adverse Outcome Pathway (AOP).
    Vietti G; Lison D; van den Brule S
    Part Fibre Toxicol; 2016 Feb; 13():11. PubMed ID: 26926090
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Carbon nanodots: Opportunities and limitations to study their biodistribution at the human lung epithelial tissue barrier.
    Durantie E; Barosova H; Drasler B; Rodriguez-Lorenzo L; Urban DA; Vanhecke D; Septiadi D; Hirschi-Ackermann L; Petri-Fink A; Rothen-Rutishauser B
    Biointerphases; 2018 Sep; 13(6):06D404. PubMed ID: 30205690
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Multiwalled carbon nanotube-induced pulmonary inflammatory and fibrotic responses and genomic changes following aspiration exposure in mice: A 1-year postexposure study.
    Snyder-Talkington BN; Dong C; Porter DW; Ducatman B; Wolfarth MG; Andrew M; Battelli L; Raese R; Castranova V; Guo NL; Qian Y
    J Toxicol Environ Health A; 2016; 79(8):352-66. PubMed ID: 27092743
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Combined exposure of diesel exhaust particles and respirable Soufrière Hills volcanic ash causes a (pro-)inflammatory response in an in vitro multicellular epithelial tissue barrier model.
    Tomašek I; Horwell CJ; Damby DE; Barošová H; Geers C; Petri-Fink A; Rothen-Rutishauser B; Clift MJ
    Part Fibre Toxicol; 2016 Dec; 13(1):67. PubMed ID: 27955700
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Carbon nanotubes and crystalline silica induce matrix remodeling and contraction by stimulating myofibroblast transformation in a three-dimensional culture of human pulmonary fibroblasts: role of dimension and rigidity.
    Hindman B; Ma Q
    Arch Toxicol; 2018 Nov; 92(11):3291-3305. PubMed ID: 30229330
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Derivation of occupational exposure limits for multi-walled carbon nanotubes and graphene using subchronic inhalation toxicity data and a multi-path particle dosimetry model.
    Lee YS; Sung JH; Song KS; Kim JK; Choi BS; Yu IJ; Park JD
    Toxicol Res (Camb); 2019 Jul; 8(4):580-586. PubMed ID: 31367339
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Respiratory hazard assessment of combined exposure to complete gasoline exhaust and respirable volcanic ash in a multicellular human lung model at the air-liquid interface.
    Tomašek I; Horwell CJ; Bisig C; Damby DE; Comte P; Czerwinski J; Petri-Fink A; Clift MJD; Drasler B; Rothen-Rutishauser B
    Environ Pollut; 2018 Jul; 238():977-987. PubMed ID: 29455917
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Part 1. Assessment of carcinogenicity and biologic responses in rats after lifetime inhalation of new-technology diesel exhaust in the ACES bioassay.
    McDonald JD; Doyle-Eisele M; Seagrave J; Gigliotti AP; Chow J; Zielinska B; Mauderly JL; Seilkop SK; Miller RA;
    Res Rep Health Eff Inst; 2015 Jan; (184):9-44; discussion 141-71. PubMed ID: 25842615
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A comparison of acute and long-term effects of industrial multiwalled carbon nanotubes on human lung and immune cells in vitro.
    Thurnherr T; Brandenberger C; Fischer K; Diener L; Manser P; Maeder-Althaus X; Kaiser JP; Krug HF; Rothen-Rutishauser B; Wick P
    Toxicol Lett; 2011 Feb; 200(3):176-86. PubMed ID: 21112381
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Polyhexamethylene guanidine phosphate aerosol particles induce pulmonary inflammatory and fibrotic responses.
    Kim HR; Lee K; Park CW; Song JA; Shin DY; Park YJ; Chung KH
    Arch Toxicol; 2016 Mar; 90(3):617-32. PubMed ID: 25716161
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Pulmonary toxicity screening studies in male rats with M5 respirable fibers and particulates.
    Warheit DB; Webb TR; Reed KL
    Inhal Toxicol; 2007 Sep; 19(11):951-63. PubMed ID: 17849279
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Mapping differential cellular protein response of mouse alveolar epithelial cells to multi-walled carbon nanotubes as a function of atomic layer deposition coating.
    Hilton GM; Taylor AJ; Hussain S; Dandley EC; Griffith EH; Garantziotis S; Parsons GN; Bonner JC; Bereman MS
    Nanotoxicology; 2017 Apr; 11(3):313-326. PubMed ID: 28277982
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A comparative study of different in vitro lung cell culture systems to assess the most beneficial tool for screening the potential adverse effects of carbon nanotubes.
    Clift MJ; Endes C; Vanhecke D; Wick P; Gehr P; Schins RP; Petri-Fink A; Rothen-Rutishauser B
    Toxicol Sci; 2014 Jan; 137(1):55-64. PubMed ID: 24284789
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Multiwall carbon nanotubes mediate macrophage activation and promote pulmonary fibrosis through TGF-β/Smad signaling pathway.
    Wang P; Nie X; Wang Y; Li Y; Ge C; Zhang L; Wang L; Bai R; Chen Z; Zhao Y; Chen C
    Small; 2013 Nov; 9(22):3799-811. PubMed ID: 23650105
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Mitsui-7, heat-treated, and nitrogen-doped multi-walled carbon nanotubes elicit genotoxicity in human lung epithelial cells.
    Siegrist KJ; Reynolds SH; Porter DW; Mercer RR; Bauer AK; Lowry D; Cena L; Stueckle TA; Kashon ML; Wiley J; Salisbury JL; Mastovich J; Bunker K; Sparrow M; Lupoi JS; Stefaniak AB; Keane MJ; Tsuruoka S; Terrones M; McCawley M; Sargent LM
    Part Fibre Toxicol; 2019 Oct; 16(1):36. PubMed ID: 31590690
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Nanometer-long Ge-imogolite nanotubes cause sustained lung inflammation and fibrosis in rats.
    van den Brule S; Beckers E; Chaurand P; Liu W; Ibouraadaten S; Palmai-Pallag M; Uwambayinema F; Yakoub Y; Avellan A; Levard C; Haufroid V; Marbaix E; Thill A; Lison D; Rose J
    Part Fibre Toxicol; 2014 Dec; 11():67. PubMed ID: 25497478
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Multi-walled carbon nanotubes (Baytubes): approach for derivation of occupational exposure limit.
    Pauluhn J
    Regul Toxicol Pharmacol; 2010 Jun; 57(1):78-89. PubMed ID: 20074606
    [TBL] [Abstract][Full Text] [Related]  

  • 60. 28-Day inhalation toxicity study with evaluation of lung deposition and retention of tangled multi-walled carbon nanotubes.
    Kim JK; Jo MS; Kim Y; Kim TG; Shin JH; Kim BW; Kim HP; Lee HK; Kim HS; Ahn K; Oh SM; Cho WS; Yu IJ
    Nanotoxicology; 2020 Mar; 14(2):250-262. PubMed ID: 31855090
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.