These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
227 related articles for article (PubMed ID: 32168323)
1. Anisotropic shortening in the wavelength of electrical waves promotes onset of electrical turbulence in cardiac tissue: An in silico study. Zimik S; Pandit R; Majumder R PLoS One; 2020; 15(3):e0230214. PubMed ID: 32168323 [TBL] [Abstract][Full Text] [Related]
2. Spiral-wave turbulence and its control in the presence of inhomogeneities in four mathematical models of cardiac tissue. Shajahan TK; Nayak AR; Pandit R PLoS One; 2009; 4(3):e4738. PubMed ID: 19270753 [TBL] [Abstract][Full Text] [Related]
3. How does β-adrenergic signalling affect the transitions from ventricular tachycardia to ventricular fibrillation? Xie Y; Grandi E; Bers DM; Sato D Europace; 2014 Mar; 16(3):452-7. PubMed ID: 24569900 [TBL] [Abstract][Full Text] [Related]
4. Cardiac electrical restitution properties and stability of reentrant spiral waves: a simulation study. Qu Z; Weiss JN; Garfinkel A Am J Physiol; 1999 Jan; 276(1):H269-83. PubMed ID: 9887041 [TBL] [Abstract][Full Text] [Related]
5. Mechanisms underlying ventricular tachycardia and its transition to ventricular fibrillation in the structurally normal heart. Samie FH; Jalife J Cardiovasc Res; 2001 May; 50(2):242-50. PubMed ID: 11334828 [TBL] [Abstract][Full Text] [Related]
6. Spiral waves in two-dimensional models of ventricular muscle: formation of a stationary core. Beaumont J; Davidenko N; Davidenko JM; Jalife J Biophys J; 1998 Jul; 75(1):1-14. PubMed ID: 9649363 [TBL] [Abstract][Full Text] [Related]
7. Effect of regional differences in cardiac cellular electrophysiology on the stability of ventricular arrhythmias: a computational study. Clayton RH; Holden AV Phys Med Biol; 2003 Jan; 48(1):95-111. PubMed ID: 12564503 [TBL] [Abstract][Full Text] [Related]
8. Nonstationary vortexlike reentrant activity as a mechanism of polymorphic ventricular tachycardia in the isolated rabbit heart. Gray RA; Jalife J; Panfilov A; Baxter WT; Cabo C; Davidenko JM; Pertsov AM Circulation; 1995 May; 91(9):2454-69. PubMed ID: 7729033 [TBL] [Abstract][Full Text] [Related]
9. Dynamics of Pivoting Electrical Waves in a Cardiac Tissue Model. Beaumont J Bull Math Biol; 2019 Jul; 81(7):2649-2690. PubMed ID: 31201662 [TBL] [Abstract][Full Text] [Related]
10. Proarrhythmic response to potassium channel blockade. Numerical studies of polymorphic tachyarrhythmias. Starmer CF; Romashko DN; Reddy RS; Zilberter YI; Starobin J; Grant AO; Krinsky VI Circulation; 1995 Aug; 92(3):595-605. PubMed ID: 7634474 [TBL] [Abstract][Full Text] [Related]
11. A mechanism of transition from ventricular fibrillation to tachycardia : effect of calcium channel blockade on the dynamics of rotating waves. Samie FH; Mandapati R; Gray RA; Watanabe Y; Zuur C; Beaumont J; Jalife J Circ Res; 2000 Mar; 86(6):684-91. PubMed ID: 10747005 [TBL] [Abstract][Full Text] [Related]
12. Mechanisms linking electrical alternans and clinical ventricular arrhythmia in human heart failure. Bayer JD; Lalani GG; Vigmond EJ; Narayan SM; Trayanova NA Heart Rhythm; 2016 Sep; 13(9):1922-31. PubMed ID: 27215536 [TBL] [Abstract][Full Text] [Related]
13. Alternans and spiral breakup in a human ventricular tissue model. ten Tusscher KH; Panfilov AV Am J Physiol Heart Circ Physiol; 2006 Sep; 291(3):H1088-100. PubMed ID: 16565318 [TBL] [Abstract][Full Text] [Related]
14. Organization of ventricular fibrillation in the human heart. Ten Tusscher KH; Hren R; Panfilov AV Circ Res; 2007 Jun; 100(12):e87-101. PubMed ID: 17540975 [TBL] [Abstract][Full Text] [Related]
15. Nonlinear physics of electrical wave propagation in the heart: a review. Alonso S; Bär M; Echebarria B Rep Prog Phys; 2016 Sep; 79(9):096601. PubMed ID: 27517161 [TBL] [Abstract][Full Text] [Related]
16. Critical Volume of Human Myocardium Necessary to Maintain Ventricular Fibrillation. Aras KK; Faye NR; Cathey B; Efimov IR Circ Arrhythm Electrophysiol; 2018 Nov; 11(11):e006692. PubMed ID: 30376733 [TBL] [Abstract][Full Text] [Related]
17. Spiral-wave dynamics depend sensitively on inhomogeneities in mathematical models of ventricular tissue. Shajahan TK; Sinha S; Pandit R Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jan; 75(1 Pt 1):011929. PubMed ID: 17358206 [TBL] [Abstract][Full Text] [Related]
18. Breakthrough waves during ventricular fibrillation depend on the degree of rotational anisotropy and the boundary conditions: a simulation study. Ashihara T; Namba T; Ikeda T; Ito M; Kinoshita M; Nakazawa K J Cardiovasc Electrophysiol; 2001 Mar; 12(3):312-22. PubMed ID: 11291805 [TBL] [Abstract][Full Text] [Related]
19. Transition from ventricular fibrillation to ventricular tachycardia: a simulation study on the role of Ca(2+)-channel blockers in human ventricular tissue. Bernus O; Van Eyck B; Verschelde H; Panfilov AV Phys Med Biol; 2002 Dec; 47(23):4167-79. PubMed ID: 12502041 [TBL] [Abstract][Full Text] [Related]
20. Scroll-wave dynamics in human cardiac tissue: lessons from a mathematical model with inhomogeneities and fiber architecture. Majumder R; Nayak AR; Pandit R PLoS One; 2011 Apr; 6(4):e18052. PubMed ID: 21483682 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]