BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 32168373)

  • 1. Estrogen Stimulation of Pleiotrophin Enhances Osteoblast Differentiation and Maintains Bone Mass in IGFBP-2 Null Mice.
    Xi G; Demambro VE; D'Costa S; Xia SK; Cox ZC; Rosen CJ; Clemmons DR
    Endocrinology; 2020 Apr; 161(4):. PubMed ID: 32168373
    [TBL] [Abstract][Full Text] [Related]  

  • 2. IGFBP-2 directly stimulates osteoblast differentiation.
    Xi G; Wai C; DeMambro V; Rosen CJ; Clemmons DR
    J Bone Miner Res; 2014 Nov; 29(11):2427-38. PubMed ID: 24839202
    [TBL] [Abstract][Full Text] [Related]  

  • 3. IRS-1 Functions as a Molecular Scaffold to Coordinate IGF-I/IGFBP-2 Signaling During Osteoblast Differentiation.
    Xi G; Shen X; Rosen CJ; Clemmons DR
    J Bone Miner Res; 2016 Jun; 31(6):1300-14. PubMed ID: 26773517
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fyn is a downstream target of the pleiotrophin/receptor protein tyrosine phosphatase beta/zeta-signaling pathway: regulation of tyrosine phosphorylation of Fyn by pleiotrophin.
    Pariser H; Ezquerra L; Herradon G; Perez-Pinera P; Deuel TF
    Biochem Biophys Res Commun; 2005 Jul; 332(3):664-9. PubMed ID: 15925565
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The coordinate cellular response to insulin-like growth factor-I (IGF-I) and insulin-like growth factor-binding protein-2 (IGFBP-2) is regulated through vimentin binding to receptor tyrosine phosphatase β (RPTPβ).
    Shen X; Xi G; Wai C; Clemmons DR
    J Biol Chem; 2015 May; 290(18):11578-90. PubMed ID: 25787077
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of mechanical loading on the expression of pleiotrophin and its receptor protein tyrosine phosphatase beta/zeta in a rat spinal deformity model.
    Kaspiris A; Chronopoulos E; Grivas TB; Vasiliadis E; Khaldi L; Lamprou M; Lelovas PP; Papaioannou N; Dontas IA; Papadimitriou E
    Cytokine; 2016 Feb; 78():7-15. PubMed ID: 26615567
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pleiotrophin disrupts calcium-dependent homophilic cell-cell adhesion and initiates an epithelial-mesenchymal transition.
    Perez-Pinera P; Alcantara S; Dimitrov T; Vega JA; Deuel TF
    Proc Natl Acad Sci U S A; 2006 Nov; 103(47):17795-800. PubMed ID: 17098867
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anaplastic lymphoma kinase is activated through the pleiotrophin/receptor protein-tyrosine phosphatase beta/zeta signaling pathway: an alternative mechanism of receptor tyrosine kinase activation.
    Perez-Pinera P; Zhang W; Chang Y; Vega JA; Deuel TF
    J Biol Chem; 2007 Sep; 282(39):28683-28690. PubMed ID: 17681947
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gender-specific changes in bone turnover and skeletal architecture in igfbp-2-null mice.
    DeMambro VE; Clemmons DR; Horton LG; Bouxsein ML; Wood TL; Beamer WG; Canalis E; Rosen CJ
    Endocrinology; 2008 May; 149(5):2051-61. PubMed ID: 18276763
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anaplastic lymphoma kinase: "Ligand Independent Activation" mediated by the PTN/RPTPβ/ζ signaling pathway.
    Deuel TF
    Biochim Biophys Acta; 2013 Oct; 1834(10):2219-23. PubMed ID: 23777859
    [TBL] [Abstract][Full Text] [Related]  

  • 11. IGFBP-2 stimulates calcium/calmodulin-dependent protein kinase kinase 2 activation leading to AMP-activated protein kinase induction which is required for osteoblast differentiation.
    Xi G; D'Costa S; Wai C; Xia SK; Cox ZC; Clemmons DR
    J Cell Physiol; 2019 Dec; 234(12):23232-23242. PubMed ID: 31155724
    [TBL] [Abstract][Full Text] [Related]  

  • 12. IGF-I and IGFBP-2 Stimulate AMPK Activation and Autophagy, Which Are Required for Osteoblast Differentiation.
    Xi G; Rosen CJ; Clemmons DR
    Endocrinology; 2016 Jan; 157(1):268-81. PubMed ID: 26556533
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Induction of human osteoprogenitor chemotaxis, proliferation, differentiation, and bone formation by osteoblast stimulating factor-1/pleiotrophin: osteoconductive biomimetic scaffolds for tissue engineering.
    Yang X; Tare RS; Partridge KA; Roach HI; Clarke NM; Howdle SM; Shakesheff KM; Oreffo RO
    J Bone Miner Res; 2003 Jan; 18(1):47-57. PubMed ID: 12510805
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pleiotrophin stimulates tyrosine phosphorylation of beta-adducin through inactivation of the transmembrane receptor protein tyrosine phosphatase beta/zeta.
    Pariser H; Perez-Pinera P; Ezquerra L; Herradon G; Deuel TF
    Biochem Biophys Res Commun; 2005 Sep; 335(1):232-9. PubMed ID: 16105548
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Expression and localization of receptor protein tyrosine phosphatase β and its ligand pleiotrophin in the submandibular gland of mice.
    Adthapanyawanich K; Yamamoto M; Wakayama T; Nakata H; Keattikunpairoj S; Iseki S
    Arch Oral Biol; 2013 Feb; 58(2):181-91. PubMed ID: 23092607
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The heparin-binding domain of IGFBP-2 has insulin-like growth factor binding-independent biologic activity in the growing skeleton.
    Kawai M; Breggia AC; DeMambro VE; Shen X; Canalis E; Bouxsein ML; Beamer WG; Clemmons DR; Rosen CJ
    J Biol Chem; 2011 Apr; 286(16):14670-80. PubMed ID: 21372140
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibition of RPTPβ/ζ blocks ethanol-induced conditioned place preference in pleiotrophin knockout mice.
    Fernández-Calle R; Gramage E; Zapico JM; de Pascual-Teresa B; Ramos A; Herradón G
    Behav Brain Res; 2019 Sep; 369():111933. PubMed ID: 31054277
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pleiotrophin/Osteoblast-stimulating factor 1: dissecting its diverse functions in bone formation.
    Tare RS; Oreffo RO; Clarke NM; Roach HI
    J Bone Miner Res; 2002 Nov; 17(11):2009-20. PubMed ID: 12412809
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exposure of KS483 cells to estrogen enhances osteogenesis and inhibits adipogenesis.
    Dang ZC; van Bezooijen RL; Karperien M; Papapoulos SE; Löwik CW
    J Bone Miner Res; 2002 Mar; 17(3):394-405. PubMed ID: 11878304
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cellular and molecular effects of growth hormone and estrogen on human bone cells.
    Kassem M
    APMIS Suppl; 1997; 71():1-30. PubMed ID: 9357492
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.