These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 32168497)

  • 1. Embedded carbon nanowire in black phosphorene and C-doping: the rule to control electronic properties.
    Pedrosa RN; Amorim RG; Scopel WL
    Nanotechnology; 2020 Apr; 31(27):275201. PubMed ID: 32168497
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface decoration of phosphorene nanoribbons with 4d transition metal atoms for spintronics.
    Fu XX; Niu Y; Hao ZW; Dong MM; Wang CK
    Phys Chem Chem Phys; 2020 Jul; 22(28):16063-16071. PubMed ID: 32633289
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface Charge Transfer Doping of Monolayer Phosphorene via Molecular Adsorption.
    He Y; Xia F; Shao Z; Zhao J; Jie J
    J Phys Chem Lett; 2015 Dec; 6(23):4701-10. PubMed ID: 26545168
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Robust indirect band gap and anisotropy of optical absorption in B-doped phosphorene.
    Wu ZF; Gao PF; Guo L; Kang J; Fang DQ; Zhang Y; Xia MG; Zhang SL; Wen YH
    Phys Chem Chem Phys; 2017 Dec; 19(47):31796-31803. PubMed ID: 29170767
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electronic structure and optical properties of B-, N-, and BN-doped black phosphorene using the first-principles.
    He J; Liu G; Li X; Zhang G
    J Mol Model; 2022 Jul; 28(8):233. PubMed ID: 35882669
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electronic Properties of Armchair Black Phosphorene Nanoribbons Edge-Modified by Transition Elements V, Cr, and Mn.
    Huang JH; Wang XF; Liu YS; Zhou LP
    Nanoscale Res Lett; 2019 Apr; 14(1):145. PubMed ID: 31030371
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tuning anisotropic electronic transport properties of phosphorene via substitutional doping.
    Guo C; Xia C; Fang L; Wang T; Liu Y
    Phys Chem Chem Phys; 2016 Oct; 18(37):25869-78. PubMed ID: 27604288
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lanthanide atom substitutionally doped blue phosphorene: electronic and magnetic behaviors.
    Su B; Li N
    Phys Chem Chem Phys; 2018 Apr; 20(16):11003-11012. PubMed ID: 29629455
    [TBL] [Abstract][Full Text] [Related]  

  • 9. C-doping anisotropy effects on borophene electronic transport.
    Cabral TLG; de Miranda LTS; de Melo Rodrigues DC; de Souza FAL; Scopel WL; Amorim RG
    J Phys Condens Matter; 2021 Dec; 34(9):. PubMed ID: 34823236
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modulation of electronic transport properties in armchair phosphorene nanoribbons by doping and edge passivation.
    Guo C; Wang T; Xia C; Liu Y
    Sci Rep; 2017 Oct; 7(1):12799. PubMed ID: 28993688
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mn-Doped black phosphorene for ultrasensitive hydrogen sulfide detection: periodic DFT calculations.
    Ghadiri M; Ghashghaee M; Ghambarian M
    Phys Chem Chem Phys; 2020 Jul; 22(27):15549-15558. PubMed ID: 32608400
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anomalous doping effect in black phosphorene using first-principles calculations.
    Yu W; Zhu Z; Niu CY; Li C; Cho JH; Jia Y
    Phys Chem Chem Phys; 2015 Jul; 17(25):16351-8. PubMed ID: 26051654
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effects of vacancy and heteroatoms-doping on the stability, electronic and magnetic properties of blue phosphorene.
    Chen J; Wang Z; Dai X; Xiao J; Long M; Xu L
    Nanotechnology; 2021 Mar; 32(13):135702. PubMed ID: 33296873
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Electronic and Magnetic Properties of Multi-Atom Doped Black Phosphorene.
    Wang K; Wang H; Zhang M; Zhao W; Liu Y; Qin H
    Nanomaterials (Basel); 2019 Feb; 9(2):. PubMed ID: 30823569
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface engineering of phosphorene nanoribbons by transition metal heteroatoms for spintronics.
    Dong MM; Wang ZQ; Zhang GP; Wang CK; Fu XX
    Phys Chem Chem Phys; 2019 Feb; 21(9):4879-4887. PubMed ID: 30778495
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modulating the electronic structures of blue phosphorene towards spintronics.
    Lu XQ; Wang CK; Fu XX
    Phys Chem Chem Phys; 2019 Jun; 21(22):11755-11763. PubMed ID: 31114815
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Semiconductor to metal transition in bilayer phosphorene under normal compressive strain.
    Manjanath A; Samanta A; Pandey T; Singh AK
    Nanotechnology; 2015 Feb; 26(7):075701. PubMed ID: 25609574
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phosphorene as a Superior Gas Sensor: Selective Adsorption and Distinct I-V Response.
    Kou L; Frauenheim T; Chen C
    J Phys Chem Lett; 2014 Aug; 5(15):2675-81. PubMed ID: 26277962
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In silico modeling: electronic properties of phosphorene monoflakes and biflakes substituted with Al, Si, and S heteroatoms.
    de la Garza CGV; Rodriguez LDS; Fomine S; Vallejo Narváez WE
    J Mol Model; 2021 May; 27(6):171. PubMed ID: 34002271
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Manipulation of Magnetic State in Armchair Black Phosphorene Nanoribbon by Charge Doping.
    Farooq MU; Hashmi A; Hong J
    ACS Appl Mater Interfaces; 2015 Jul; 7(26):14423-30. PubMed ID: 26076899
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.