These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 32168636)

  • 1. Behavior of charged and uncharged drops in high alternating tangential electric fields.
    Löwe JM; Hinrichsen V; Roisman IV; Tropea C
    Phys Rev E; 2020 Feb; 101(2-1):023102. PubMed ID: 32168636
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of electric charge and motion of water drops on the inception field strength of partial discharges.
    Löwe JM; Hinrichsen V; Roisman IV; Tropea C
    Phys Rev E; 2020 Dec; 102(6-1):063101. PubMed ID: 33465960
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Particle-covered drops in electric fields: drop deformation and surface particle organization.
    Mikkelsen A; Khobaib K; Eriksen FK; Måløy KJ; Rozynek Z
    Soft Matter; 2018 Jul; 14(26):5442-5451. PubMed ID: 29901062
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coalescence Behavior of Stable Pendent Drop Pairs Held at Different Electric Potentials.
    Mhatre S; Hjartnes T; Simon S; Sjöblom J
    Langmuir; 2020 Feb; 36(7):1642-1650. PubMed ID: 32008317
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ice nucleation in high alternating electric fields: Effect of electric field strength and frequency.
    Löwe JM; Hinrichsen V; Schremb M; Tropea C
    Phys Rev E; 2021 Jan; 103(1-1):012801. PubMed ID: 33601624
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanics of Pickering Drops Probed by Electric Field-Induced Stress.
    Mikkelsen A; Dommersnes P; Rozynek Z; Gholamipour-Shirazi A; Carvalho MDS; Fossum JO
    Materials (Basel); 2017 Apr; 10(4):. PubMed ID: 28772796
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electric generation and ratcheted transport of contact-charged drops.
    Cartier CA; Graybill JR; Bishop KJM
    Phys Rev E; 2017 Oct; 96(4-1):043101. PubMed ID: 29347598
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Non-coalescence of oppositely charged drops.
    Ristenpart WD; Bird JC; Belmonte A; Dollar F; Stone HA
    Nature; 2009 Sep; 461(7262):377-80. PubMed ID: 19759616
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Colloidal stability dictates drop breakup under electric fields.
    Lanauze JA; Sengupta R; Bleier BJ; Yezer BA; Khair AS; Walker LM
    Soft Matter; 2018 Nov; 14(46):9351-9360. PubMed ID: 30457153
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Size-selective sliding of sessile drops on a slightly inclined plane using low-frequency AC electrowetting.
    Hong J; Lee SJ; Koo BC; Suh YK; Kang KH
    Langmuir; 2012 Apr; 28(15):6307-12. PubMed ID: 22439770
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transient electrohydrodynamics of a liquid drop in AC electric fields.
    Esmaeeli A
    Eur Phys J E Soft Matter; 2018 Nov; 41(11):135. PubMed ID: 30446845
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The electrophoretic mobility of an uncharged particle.
    O'Brien RW; Beattie JK; Djerdjev AM
    J Colloid Interface Sci; 2014 Apr; 420():70-3. PubMed ID: 24559702
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Controlling charge on levitating drops.
    Hilger RT; Westphall MS; Smith LM
    Anal Chem; 2007 Aug; 79(15):6027-30. PubMed ID: 17580951
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monitoring Local Electric Fields at Electrode Surfaces Using Surface Enhanced Raman Scattering-Based Stark-Shift Spectroscopy during Hydrogen Evolution Reactions.
    Shi H; Cai Z; Patrow J; Zhao B; Wang Y; Wang Y; Benderskii A; Dawlaty J; Cronin SB
    ACS Appl Mater Interfaces; 2018 Oct; 10(39):33678-33683. PubMed ID: 30187745
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Breakup of a Multiple Emulsion Drop in a Uniform Electric Field.
    Ha JW; Yang SM
    J Colloid Interface Sci; 1999 May; 213(1):92-100. PubMed ID: 10191011
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrolytic drops in an electric field: A numerical study of drop deformation and breakup.
    Pillai R; Berry JD; Harvie DJ; Davidson MR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jul; 92(1):013007. PubMed ID: 26274270
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Breakup of a leaky dielectric drop in a uniform electric field.
    Dong Q; Sau A
    Phys Rev E; 2019 Apr; 99(4-1):043106. PubMed ID: 31108624
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrocoalescence: effects of DC electric fields on coalescence of drops at planar interfaces.
    Aryafar H; Kavehpour HP
    Langmuir; 2009 Nov; 25(21):12460-5. PubMed ID: 19817472
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrowetting: a versatile tool for drop manipulation, generation, and characterization.
    Mugele F; Duits M; van den Ende D
    Adv Colloid Interface Sci; 2010 Dec; 161(1-2):115-23. PubMed ID: 20004880
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.