These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 32168653)

  • 1. Semi-Lagrangian lattice Boltzmann model for compressible flows on unstructured meshes.
    Saadat MH; Bösch F; Karlin IV
    Phys Rev E; 2020 Feb; 101(2-1):023311. PubMed ID: 32168653
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Arbitrary Lagrangian-Eulerian unstructured finite-volume lattice-Boltzmann method for computing two-dimensional compressible inviscid flows over moving bodies.
    Hejranfar K; Hashemi Nasab H; Azampour MH
    Phys Rev E; 2020 Feb; 101(2-1):023308. PubMed ID: 32168620
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Semi-Lagrangian lattice Boltzmann method for compressible flows.
    Wilde D; Krämer A; Reith D; Foysi H
    Phys Rev E; 2020 May; 101(5-1):053306. PubMed ID: 32575305
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Theory, Analysis, and Applications of the Entropic Lattice Boltzmann Model for Compressible Flows.
    Frapolli N; Chikatamarla S; Karlin I
    Entropy (Basel); 2020 Mar; 22(3):. PubMed ID: 33286144
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Entropic lattice Boltzmann model for gas dynamics: Theory, boundary conditions, and implementation.
    Frapolli N; Chikatamarla SS; Karlin IV
    Phys Rev E; 2016 Jun; 93(6):063302. PubMed ID: 27415382
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lattice Boltzmann model for compressible flows on standard lattices: Variable Prandtl number and adiabatic exponent.
    Saadat MH; Bösch F; Karlin IV
    Phys Rev E; 2019 Jan; 99(1-1):013306. PubMed ID: 30780294
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lattice Boltzmann method for simulation of compressible flows on standard lattices.
    Prasianakis NI; Karlin IV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jul; 78(1 Pt 2):016704. PubMed ID: 18764078
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-dimensional lattice Boltzmann model for compressible flows.
    Sun C; Hsu AT
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jul; 68(1 Pt 2):016303. PubMed ID: 12935242
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Semi-Lagrangian off-lattice Boltzmann method for weakly compressible flows.
    Krämer A; Küllmer K; Reith D; Joppich W; Foysi H
    Phys Rev E; 2017 Feb; 95(2-1):023305. PubMed ID: 28297853
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Parallel finite-volume discrete Boltzmann method for inviscid compressible flows on unstructured grids.
    Xu L; Chen R; Cai XC
    Phys Rev E; 2021 Feb; 103(2-1):023306. PubMed ID: 33736091
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Entropic multirelaxation lattice Boltzmann models for turbulent flows.
    Bösch F; Chikatamarla SS; Karlin IV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Oct; 92(4):043309. PubMed ID: 26565366
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Consistent lattice Boltzmann modeling of low-speed isothermal flows at finite Knudsen numbers in slip-flow regime. II. Application to curved boundaries.
    Silva G
    Phys Rev E; 2018 Aug; 98(2-1):023302. PubMed ID: 30253480
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simulation of high-Mach-number inviscid flows using a third-order Runge-Kutta and fifth-order WENO-based finite-difference lattice Boltzmann method.
    Shirsat AU; Nayak SG; Patil DV
    Phys Rev E; 2022 Aug; 106(2-2):025314. PubMed ID: 36109898
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Particles on demand for flows with strong discontinuities.
    Kallikounis NG; Dorschner B; Karlin IV
    Phys Rev E; 2022 Jul; 106(1-2):015301. PubMed ID: 35974602
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Entropic lattice Boltzmann model for compressible flows.
    Frapolli N; Chikatamarla SS; Karlin IV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Dec; 92(6):061301. PubMed ID: 26764625
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Study of phase-field lattice Boltzmann models based on the conservative Allen-Cahn equation.
    Begmohammadi A; Haghani-Hassan-Abadi R; Fakhari A; Bolster D
    Phys Rev E; 2020 Aug; 102(2-1):023305. PubMed ID: 32942360
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lattice Boltzmann method for thermal flow simulation on standard lattices.
    Prasianakis NI; Karlin IV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jul; 76(1 Pt 2):016702. PubMed ID: 17677589
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alternative method to construct equilibrium distribution functions in lattice-Boltzmann method simulation of inviscid compressible flows at high Mach number.
    Qu K; Shu C; Chew YT
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Mar; 75(3 Pt 2):036706. PubMed ID: 17500825
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient supersonic flow simulations using lattice Boltzmann methods based on numerical equilibria.
    Latt J; Coreixas C; Beny J; Parmigiani A
    Philos Trans A Math Phys Eng Sci; 2020 Jul; 378(2175):20190559. PubMed ID: 32833583
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lattice Boltzmann model with generalized wall boundary conditions for arbitrary catalytic reactivity.
    Khatoonabadi M; Prasianakis NI; Mantzaras J
    Phys Rev E; 2021 Jun; 103(6-1):063303. PubMed ID: 34271718
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.