These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 32168668)

  • 1. Uncertainty quantification of sensitivities of time-average quantities in chaotic systems.
    Kantarakias KD; Shawki K; Papadakis G
    Phys Rev E; 2020 Feb; 101(2-1):022223. PubMed ID: 32168668
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Uncertainty quantification of time-average quantities of chaotic systems using sensitivity-enhanced polynomial chaos expansion.
    Kantarakias KD; Papadakis G
    Phys Rev E; 2024 Apr; 109(4-1):044208. PubMed ID: 38755938
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Feedback control of chaotic systems using multiple shooting shadowing and application to Kuramoto-Sivashinsky equation.
    Shawki K; Papadakis G
    Proc Math Phys Eng Sci; 2020 Aug; 476(2240):20200322. PubMed ID: 32922158
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sensitivity of long periodic orbits of chaotic systems.
    Lasagna D
    Phys Rev E; 2020 Nov; 102(5-1):052220. PubMed ID: 33327162
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Uncertainty in cardiac myofiber orientation and stiffnesses dominate the variability of left ventricle deformation response.
    Rodríguez-Cantano R; Sundnes J; Rognes ME
    Int J Numer Method Biomed Eng; 2019 May; 35(5):e3178. PubMed ID: 30632711
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of chaotic saddles in high-dimensional dynamical systems: the Kuramoto-Sivashinsky equation.
    Rempel EL; Chian AC; Macau EE; Rosa RR
    Chaos; 2004 Sep; 14(3):545-56. PubMed ID: 15446964
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fast uncertainty quantification for dynamic flux balance analysis using non-smooth polynomial chaos expansions.
    Paulson JA; Martin-Casas M; Mesbah A
    PLoS Comput Biol; 2019 Aug; 15(8):e1007308. PubMed ID: 31469832
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Uncertainty quantification for ecological models with random parameters.
    Reimer JR; Adler FR; Golden KM; Narayan A
    Ecol Lett; 2022 Oct; 25(10):2232-2244. PubMed ID: 36068942
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gaussian Processes and Polynomial Chaos Expansion for Regression Problem: Linkage via the RKHS and Comparison via the KL Divergence.
    Yan L; Duan X; Liu B; Xu J
    Entropy (Basel); 2018 Mar; 20(3):. PubMed ID: 33265282
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polynomial chaos expansion based sensitivity analysis of predicted knee reactions-assessing the influence of the primary ligaments in distraction based models.
    Hafez MA; Halloran JP
    Comput Methods Biomech Biomed Engin; 2023; 26(14):1678-1690. PubMed ID: 36222456
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting chaos for infinite dimensional dynamical systems: the Kuramoto-Sivashinsky equation, a case study.
    Smyrlis YS; Papageorgiou DT
    Proc Natl Acad Sci U S A; 1991 Dec; 88(24):11129-32. PubMed ID: 11607246
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient sampling for polynomial chaos-based uncertainty quantification and sensitivity analysis using weighted approximate Fekete points.
    Burk KM; Narayan A; Orr JA
    Int J Numer Method Biomed Eng; 2020 Nov; 36(11):e3395. PubMed ID: 32794272
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Generalized correlation integral vectors: A distance concept for chaotic dynamical systems.
    Haario H; Kalachev L; Hakkarainen J
    Chaos; 2015 Jun; 25(6):063102. PubMed ID: 26117096
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Robust motion trajectory optimization of overhead cranes based on polynomial chaos expansion.
    Peng H; Zhao H; Wang X; Li Y
    ISA Trans; 2021 Apr; 110():71-85. PubMed ID: 33745509
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reservoir observers: Model-free inference of unmeasured variables in chaotic systems.
    Lu Z; Pathak J; Hunt B; Girvan M; Brockett R; Ott E
    Chaos; 2017 Apr; 27(4):041102. PubMed ID: 28456169
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Generalized polynomial chaos-based uncertainty quantification and propagation in multi-scale modeling of cardiac electrophysiology.
    Hu Z; Du D; Du Y
    Comput Biol Med; 2018 Nov; 102():57-74. PubMed ID: 30248513
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Global Reliability Sensitivity Analysis Based on Maximum Entropy and 2-Layer Polynomial Chaos Expansion.
    Zhao J; Zeng S; Guo J; Du S
    Entropy (Basel); 2018 Mar; 20(3):. PubMed ID: 33265293
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An in-depth numerical study of the two-dimensional Kuramoto-Sivashinsky equation.
    Kalogirou A; Keaveny EE; Papageorgiou DT
    Proc Math Phys Eng Sci; 2015 Jul; 471(2179):20140932. PubMed ID: 26345218
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Monte Carlo method for multiparameter estimation in coupled chaotic systems.
    Mariño IP; Míguez J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Nov; 76(5 Pt 2):057203. PubMed ID: 18233798
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Global sensitivity analysis with multifidelity Monte Carlo and polynomial chaos expansion for vascular haemodynamics.
    Schäfer F; Schiavazzi DE; Hellevik LR; Sturdy J
    Int J Numer Method Biomed Eng; 2024 Jun; ():e3836. PubMed ID: 38837871
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.