These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
217 related articles for article (PubMed ID: 32168684)
1. Reduction of oscillator dynamics on complex networks to dynamics on complete graphs through virtual frequencies. Gao J; Efstathiou K Phys Rev E; 2020 Feb; 101(2-1):022302. PubMed ID: 32168684 [TBL] [Abstract][Full Text] [Related]
2. Bifurcations in the Kuramoto model on graphs. Chiba H; Medvedev GS; Mizuhara MS Chaos; 2018 Jul; 28(7):073109. PubMed ID: 30070519 [TBL] [Abstract][Full Text] [Related]
3. Synchronous harmony in an ensemble of Hamiltonian mean-field oscillators and inertial Kuramoto oscillators. Ha SY; Lee J; Li Z Chaos; 2018 Nov; 28(11):113112. PubMed ID: 30501218 [TBL] [Abstract][Full Text] [Related]
4. Development of structural correlations and synchronization from adaptive rewiring in networks of Kuramoto oscillators. Papadopoulos L; Kim JZ; Kurths J; Bassett DS Chaos; 2017 Jul; 27(7):073115. PubMed ID: 28764402 [TBL] [Abstract][Full Text] [Related]
5. Synchronization and chimera states of frequency-weighted Kuramoto-oscillator networks. Wang H; Li X Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jun; 83(6 Pt 2):066214. PubMed ID: 21797468 [TBL] [Abstract][Full Text] [Related]
6. Local synchronization in complex networks of coupled oscillators. Stout J; Whiteway M; Ott E; Girvan M; Antonsen TM Chaos; 2011 Jun; 21(2):025109. PubMed ID: 21721787 [TBL] [Abstract][Full Text] [Related]
7. Route to synchronization in coupled phase oscillators with frequency-dependent coupling: Explosive or continuous? Kumar M; Gupta S Phys Rev E; 2022 Oct; 106(4-1):044310. PubMed ID: 36397479 [TBL] [Abstract][Full Text] [Related]
8. Effective Subnetwork Topology for Synchronizing Interconnected Networks of Coupled Phase Oscillators. Yamamoto H; Kubota S; Shimizu FA; Hirano-Iwata A; Niwano M Front Comput Neurosci; 2018; 12():17. PubMed ID: 29643771 [TBL] [Abstract][Full Text] [Related]
9. Explosive synchronization in interlayer phase-shifted Kuramoto oscillators on multiplex networks. Kumar A; Jalan S Chaos; 2021 Apr; 31(4):041103. PubMed ID: 34251235 [TBL] [Abstract][Full Text] [Related]
10. Driven synchronization in random networks of oscillators. Hindes J; Myers CR Chaos; 2015 Jul; 25(7):073119. PubMed ID: 26232970 [TBL] [Abstract][Full Text] [Related]
11. Partial synchronization and community switching in phase-oscillator networks and its analysis based on a bidirectional, weighted chain of three oscillators. Kato M; Kori H Phys Rev E; 2023 Jan; 107(1-1):014210. PubMed ID: 36797893 [TBL] [Abstract][Full Text] [Related]
12. Criterion for the emergence of explosive synchronization transitions in networks of phase oscillators. Zhu L; Tian L; Shi D Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Oct; 88(4):042921. PubMed ID: 24229263 [TBL] [Abstract][Full Text] [Related]
13. Fisher information and criticality in the Kuramoto model of nonidentical oscillators. Kalloniatis AC; Zuparic ML; Prokopenko M Phys Rev E; 2018 Aug; 98(2-1):022302. PubMed ID: 30253611 [TBL] [Abstract][Full Text] [Related]
14. Explosive synchronization with partial degree-frequency correlation. Pinto RS; Saa A Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Feb; 91(2):022818. PubMed ID: 25768563 [TBL] [Abstract][Full Text] [Related]
15. Dynamics of the Kuramoto-Sakaguchi oscillator network with asymmetric order parameter. Chen B; Engelbrecht JR; Mirollo R Chaos; 2019 Jan; 29(1):013126. PubMed ID: 30709124 [TBL] [Abstract][Full Text] [Related]
16. Explosive synchronization transitions in complex neural networks. Chen H; He G; Huang F; Shen C; Hou Z Chaos; 2013 Sep; 23(3):033124. PubMed ID: 24089960 [TBL] [Abstract][Full Text] [Related]
17. Onset of synchronization in complex networks of noisy oscillators. Sonnenschein B; Schimansky-Geier L Phys Rev E Stat Nonlin Soft Matter Phys; 2012 May; 85(5 Pt 1):051116. PubMed ID: 23004712 [TBL] [Abstract][Full Text] [Related]
18. Analysis of cluster explosive synchronization in complex networks. Ji P; Peron TK; Rodrigues FA; Kurths J Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Dec; 90(6):062810. PubMed ID: 25615151 [TBL] [Abstract][Full Text] [Related]
19. Determination of the critical coupling of explosive synchronization transitions in scale-free networks by mean-field approximations. Peron TK; Rodrigues FA Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Nov; 86(5 Pt 2):056108. PubMed ID: 23214844 [TBL] [Abstract][Full Text] [Related]
20. Reentrant synchronization and pattern formation in pacemaker-entrained Kuramoto oscillators. Radicchi F; Meyer-Ortmanns H Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Aug; 74(2 Pt 2):026203. PubMed ID: 17025521 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]