These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 32168688)

  • 1. Lagrangian descriptors for open maps.
    Carlo GG; Borondo F
    Phys Rev E; 2020 Feb; 101(2-1):022208. PubMed ID: 32168688
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Theory of short periodic orbits for partially open quantum maps.
    Carlo GG; Benito RM; Borondo F
    Phys Rev E; 2016 Jul; 94(1-1):012222. PubMed ID: 27575138
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of short periodic orbits in quantum maps with continuous openings.
    Prado CA; Carlo GG; Benito RM; Borondo F
    Phys Rev E; 2018 Apr; 97(4-1):042211. PubMed ID: 29758733
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Classical transients and the support of open quantum maps.
    Carlo GG; Wisniacki DA; Ermann L; Benito RM; Borondo F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):012909. PubMed ID: 23410406
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantifying chaos using Lagrangian descriptors.
    Hillebrand M; Zimper S; Ngapasare A; Katsanikas M; Wiggins S; Skokos C
    Chaos; 2022 Dec; 32(12):123122. PubMed ID: 36587363
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phase space localization of chaotic eigenstates: violating ergodicity.
    Lakshminarayan A; Cerruti NR; Tomsovic S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jan; 63(1 Pt 2):016209. PubMed ID: 11304337
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of chaos on precursors of quantum criticality.
    García-Mata I; Vergini E; Wisniacki DA
    Phys Rev E; 2021 Dec; 104(6):L062202. PubMed ID: 35030879
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Localization of resonance eigenfunctions on quantum repellers.
    Ermann L; Carlo GG; Saraceno M
    Phys Rev Lett; 2009 Jul; 103(5):054102. PubMed ID: 19792503
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exact relations between homoclinic and periodic orbit actions in chaotic systems.
    Li J; Tomsovic S
    Phys Rev E; 2018 Feb; 97(2-1):022216. PubMed ID: 29548081
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantum chaotic scattering in graphene systems in the absence of invariant classical dynamics.
    Wang GL; Ying L; Lai YC; Grebogi C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 May; 87(5):052908. PubMed ID: 23767599
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Order-chaos transition in correlation diagrams and quantization of period orbits.
    Arranz FJ; Montes J; Borondo F
    Phys Rev E; 2023 Sep; 108(3-1):034210. PubMed ID: 37849198
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exact decomposition of homoclinic orbit actions in chaotic systems: Information reduction.
    Li J; Tomsovic S
    Phys Rev E; 2019 Mar; 99(3-1):032212. PubMed ID: 30999433
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Towards a semiclassical understanding of chaotic single- and many-particle quantum dynamics at post-Heisenberg time scales.
    Waltner D; Richter K
    Phys Rev E; 2019 Oct; 100(4-1):042212. PubMed ID: 31770924
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Semiclassical quantization of nonadiabatic systems with hopping periodic orbits.
    Fujii M; Yamashita K
    J Chem Phys; 2015 Feb; 142(7):074104. PubMed ID: 25701999
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phase space analysis of the dynamics on a potential energy surface with an entrance channel and two potential wells.
    Katsanikas M; García-Garrido VJ; Agaoglou M; Wiggins S
    Phys Rev E; 2020 Jul; 102(1-1):012215. PubMed ID: 32795001
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unveiling the chaotic structure in phase space of molecular systems using Lagrangian descriptors.
    Revuelta F; Benito RM; Borondo F
    Phys Rev E; 2019 Mar; 99(3-1):032221. PubMed ID: 30999489
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Open quantum maps from complex scaling of kicked scattering systems.
    Mertig N; Shudo A
    Phys Rev E; 2018 Apr; 97(4-1):042216. PubMed ID: 29758738
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relatively robust classical structures in dissipative quantum chaotic systems.
    Raviola LA; Carlo GG; Rivas AM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Apr; 81(4 Pt 2):047201. PubMed ID: 20481861
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantum chaotic resonances from short periodic orbits.
    Novaes M; Pedrosa JM; Wisniacki D; Carlo GG; Keating JP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Sep; 80(3 Pt 2):035202. PubMed ID: 19905166
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Scarring by homoclinic and heteroclinic orbits.
    Wisniacki DA; Vergini E; Benito RM; Borondo F
    Phys Rev Lett; 2006 Sep; 97(9):094101. PubMed ID: 17026365
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.