These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 32168688)
21. Geometric determination of classical actions of heteroclinic and unstable periodic orbits. Li J; Tomsovic S Phys Rev E; 2017 Jun; 95(6-1):062224. PubMed ID: 28709367 [TBL] [Abstract][Full Text] [Related]
22. Short periodic orbit approach to resonances and the fractal Weyl law. Pedrosa JM; Wisniacki D; Carlo GG; Novaes M Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Mar; 85(3 Pt 2):036203. PubMed ID: 22587157 [TBL] [Abstract][Full Text] [Related]
23. Perturbations and chaos in quantum maps. Bullo DE; Wisniacki DA Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Aug; 86(2 Pt 2):026206. PubMed ID: 23005844 [TBL] [Abstract][Full Text] [Related]
24. Lagrangian descriptors for the Bunimovich stadium billiard. Carlo GG; Montes J; Borondo F Phys Rev E; 2022 Jan; 105(1-1):014208. PubMed ID: 35193177 [TBL] [Abstract][Full Text] [Related]
25. Visualization and comparison of classical structures and quantum states of four-dimensional maps. Richter M; Lange S; Bäcker A; Ketzmerick R Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Feb; 89(2):022902. PubMed ID: 25353540 [TBL] [Abstract][Full Text] [Related]
27. Tunneling mechanism due to chaos in a complex phase space. Onishi T; Shudo A; Ikeda KS; Takahashi K Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Aug; 64(2 Pt 2):025201. PubMed ID: 11497640 [TBL] [Abstract][Full Text] [Related]
28. Phase space structure and chaotic scattering in near-integrable systems. Koch BP; Bruhn B Chaos; 1993 Oct; 3(4):443-457. PubMed ID: 12780051 [TBL] [Abstract][Full Text] [Related]
29. Disentangling regular and chaotic motion in the standard map using complex network analysis of recurrences in phase space. Zou Y; Donner RV; Thiel M; Kurths J Chaos; 2016 Feb; 26(2):023120. PubMed ID: 26931601 [TBL] [Abstract][Full Text] [Related]
30. A semiclassical reversibility paradox in simple chaotic systems. Tomsovic S Philos Trans A Math Phys Eng Sci; 2016 Jun; 374(2069):. PubMed ID: 27140974 [TBL] [Abstract][Full Text] [Related]
31. Route to chaos in optomechanics. Bakemeier L; Alvermann A; Fehske H Phys Rev Lett; 2015 Jan; 114(1):013601. PubMed ID: 25615468 [TBL] [Abstract][Full Text] [Related]
32. Semiclassical approach to long time propagation in quantum chaos: predicting scars. Vergini EG Phys Rev Lett; 2012 Jun; 108(26):264101. PubMed ID: 23004984 [TBL] [Abstract][Full Text] [Related]
33. Frobenius-perron resonances for maps with a mixed phase space. Weber J; Haake F; Seba P Phys Rev Lett; 2000 Oct; 85(17):3620-3. PubMed ID: 11030965 [TBL] [Abstract][Full Text] [Related]
34. Semiclassical Identification of Periodic Orbits in a Quantum Many-Body System. Akila M; Waltner D; Gutkin B; Braun P; Guhr T Phys Rev Lett; 2017 Apr; 118(16):164101. PubMed ID: 28474905 [TBL] [Abstract][Full Text] [Related]
35. Signatures of classical structures in the leading eigenstates of quantum dissipative systems. Carlo GG; Ermann L; Rivas AMF; Spina ME Phys Rev E; 2017 Sep; 96(3-1):032202. PubMed ID: 29346928 [TBL] [Abstract][Full Text] [Related]
36. Classical invariants and the quantization of chaotic systems. Wisniacki DA; Vergini E; Benito RM; Borondo F Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Sep; 70(3 Pt 2):035202. PubMed ID: 15524573 [TBL] [Abstract][Full Text] [Related]
37. Efficient topological chaos embedded in the blinking vortex system. Kin E; Sakajo T Chaos; 2005 Jun; 15(2):23111. PubMed ID: 16035887 [TBL] [Abstract][Full Text] [Related]
38. Snap-back repellers and chaotic attractors. Gardini L; Tramontana F Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Apr; 81(4 Pt 2):046202. PubMed ID: 20481802 [TBL] [Abstract][Full Text] [Related]
39. Chaos: A new mechanism for enhancing the optical generation rate in optically thin solar cells. Seim E; Kohler A; Lukacs R; Brandsrud MA; Marstein ES; Olsen E; Blümel R Chaos; 2019 Sep; 29(9):093132. PubMed ID: 31575130 [TBL] [Abstract][Full Text] [Related]
40. Statistics of chaotic resonances in an optical microcavity. Wang L; Lippolis D; Li ZY; Jiang XF; Gong Q; Xiao YF Phys Rev E; 2016 Apr; 93(4):040201. PubMed ID: 27176237 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]