These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Efficiency at maximum power of a laser quantum heat engine enhanced by noise-induced coherence. Dorfman KE; Xu D; Cao J Phys Rev E; 2018 Apr; 97(4-1):042120. PubMed ID: 29758726 [TBL] [Abstract][Full Text] [Related]
3. Quantum mechanical bound for efficiency of quantum Otto heat engine. Park JM; Lee S; Chun HM; Noh JD Phys Rev E; 2019 Jul; 100(1-1):012148. PubMed ID: 31499873 [TBL] [Abstract][Full Text] [Related]
4. Finite-time quantum Otto engine: Surpassing the quasistatic efficiency due to friction. Lee S; Ha M; Park JM; Jeong H Phys Rev E; 2020 Feb; 101(2-1):022127. PubMed ID: 32168587 [TBL] [Abstract][Full Text] [Related]
6. A quantum-dot heat engine operating close to the thermodynamic efficiency limits. Josefsson M; Svilans A; Burke AM; Hoffmann EA; Fahlvik S; Thelander C; Leijnse M; Linke H Nat Nanotechnol; 2018 Oct; 13(10):920-924. PubMed ID: 30013221 [TBL] [Abstract][Full Text] [Related]
7. Finite-time performance of a quantum heat engine with a squeezed thermal bath. Wang J; He J; Ma Y Phys Rev E; 2019 Nov; 100(5-1):052126. PubMed ID: 31870038 [TBL] [Abstract][Full Text] [Related]
8. Thermodynamic Uncertainty Relation in Slowly Driven Quantum Heat Engines. Miller HJD; Mohammady MH; Perarnau-Llobet M; Guarnieri G Phys Rev Lett; 2021 May; 126(21):210603. PubMed ID: 34114847 [TBL] [Abstract][Full Text] [Related]
9. Finite-power performance of quantum heat engines in linear response. Liu Q; He J; Ma Y; Wang J Phys Rev E; 2019 Jul; 100(1-1):012105. PubMed ID: 31499858 [TBL] [Abstract][Full Text] [Related]
10. Collective effects on the performance and stability of quantum heat engines. Souza LDS; Manzano G; Fazio R; Iemini F Phys Rev E; 2022 Jul; 106(1-1):014143. PubMed ID: 35974546 [TBL] [Abstract][Full Text] [Related]
11. Quantum Heat Engines with Complex Working Media, Complete Otto Cycles and Heuristics. Johal RS; Mehta V Entropy (Basel); 2021 Sep; 23(9):. PubMed ID: 34573774 [TBL] [Abstract][Full Text] [Related]
13. Efficiency versus speed in quantum heat engines: Rigorous constraint from Lieb-Robinson bound. Shiraishi N; Tajima H Phys Rev E; 2017 Aug; 96(2-1):022138. PubMed ID: 28950461 [TBL] [Abstract][Full Text] [Related]
14. Violating the thermodynamic uncertainty relation in the three-level maser. Kalaee AAS; Wacker A; Potts PP Phys Rev E; 2021 Jul; 104(1):L012103. PubMed ID: 34412265 [TBL] [Abstract][Full Text] [Related]
15. Power, efficiency, and fluctuations in steady-state heat engines. Benenti G; Casati G; Wang J Phys Rev E; 2020 Oct; 102(4-1):040103. PubMed ID: 33212678 [TBL] [Abstract][Full Text] [Related]
16. Monitored nonadiabatic and coherent-controlled quantum unital Otto heat engines: First four cumulants. El Makouri A; Slaoui A; Ahl Laamara R Phys Rev E; 2023 Oct; 108(4-1):044114. PubMed ID: 37978648 [TBL] [Abstract][Full Text] [Related]
17. Heat-machine control by quantum-state preparation: from quantum engines to refrigerators. Gelbwaser-Klimovsky D; Kurizki G Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Aug; 90(2):022102. PubMed ID: 25215684 [TBL] [Abstract][Full Text] [Related]