These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 32168710)

  • 1. Spontaneous helical flows in active nematics lying on a cylindrical surface.
    Napoli G; Turzi S
    Phys Rev E; 2020 Feb; 101(2-1):022701. PubMed ID: 32168710
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrodynamic theory for nematic shells: The interplay among curvature, flow, and alignment.
    Napoli G; Vergori L
    Phys Rev E; 2016 Aug; 94(2-1):020701. PubMed ID: 27627231
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nematic director reorientation at solid and liquid interfaces under flow: SAXS studies in a microfluidic device.
    Silva BF; Zepeda-Rosales M; Venkateswaran N; Fletcher BJ; Carter LG; Matsui T; Weiss TM; Han J; Li Y; Olsson U; Safinya CR
    Langmuir; 2015 Apr; 31(14):4361-71. PubMed ID: 25396748
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Extrinsic curvature effects on nematic shells.
    Napoli G; Vergori L
    Phys Rev Lett; 2012 May; 108(20):207803. PubMed ID: 23003189
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Director alignment at the nematic-isotropic interface: elastic anisotropy and active anchoring.
    Coelho RCV; Araújo NAM; Telo da Gama MM
    Philos Trans A Math Phys Eng Sci; 2021 Oct; 379(2208):20200394. PubMed ID: 34455836
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transient flow-driven distortion of a nematic liquid crystal in channel flow with dissipative weak planar anchoring.
    Cousins JRL; Wilson SK; Mottram NJ; Wilkes D; Weegels L
    Phys Rev E; 2020 Dec; 102(6-1):062703. PubMed ID: 33466031
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pressure-driven changes to spontaneous flow in active nematic liquid crystals.
    Walton J; McKay G; Grinfeld M; Mottram NJ
    Eur Phys J E Soft Matter; 2020 Aug; 43(8):51. PubMed ID: 32743686
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simulations of flow-induced director structures in nematic liquid crystals through leslie-ericksen equations. II. Interpretation Of NMR experiments in liquid crystal polymers.
    Martins AF; Gomes AE; Polimeno A; Orian L
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Aug; 62(2 Pt A):2301-9. PubMed ID: 11088697
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stokes drag of spherical particles in a nematic environment at low Ericksen numbers.
    Stark H; Ventzki D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Sep; 64(3 Pt 1):031711. PubMed ID: 11580359
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiparticle collision dynamics for tensorial nematodynamics.
    Mandal S; Mazza MG
    Phys Rev E; 2019 Jun; 99(6-1):063319. PubMed ID: 31330733
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of shear flow on the Fréedericksz transition in nematic liquid crystals.
    Makarov DV; Zakhlevnykh AN
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Oct; 74(4 Pt 1):041710. PubMed ID: 17155081
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrokinetic effects in nematic suspensions: Single-particle electro-osmosis and interparticle interactions.
    Conklin C; Tovkach OM; Viñals J; Calderer MC; Golovaty D; Lavrentovich OD; Walkington NJ
    Phys Rev E; 2018 Aug; 98(2-1):022703. PubMed ID: 30253587
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Symmetry Breaking of Self-Propelled Topological Defects in Thin-Film Active Chiral Nematics.
    Wang W; Ren H; Zhang R
    Phys Rev Lett; 2024 Jan; 132(3):038301. PubMed ID: 38307071
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Orientational transitions in a nematic liquid crystal confined by competing surfaces.
    Rodríguez-Ponce I; Romero-Enrique JM; Rull LF
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Nov; 64(5 Pt 1):051704. PubMed ID: 11735942
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anisotropic stokes drag and dynamic lift on cylindrical colloids in a nematic liquid crystal.
    Rovner JB; Lapointe CP; Reich DH; Leheny RL
    Phys Rev Lett; 2010 Nov; 105(22):228301. PubMed ID: 21231426
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nematic shells: new insights in topology- and curvature-induced effects.
    Napoli G; Pylypovskyi OV; Sheka DD; Vergori L
    Soft Matter; 2021 Nov; 17(45):10322-10333. PubMed ID: 34734955
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Casimir-like effect induced by active nematics.
    Pour Haddadan FK
    J Phys Condens Matter; 2024 Aug; 36(45):. PubMed ID: 39129644
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Temperature effects on capillary instabilities in a thin nematic liquid crystalline fiber embedded in a viscous matrix.
    Cheong AG; Rey AD
    Eur Phys J E Soft Matter; 2002 Oct; 9(2):171-93. PubMed ID: 15015115
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anisotropic viscous effects of local flow by a rotating microparticle in nematic liquid crystal.
    Lee JY; Lee JH; Lev B; Kim JH
    Phys Rev E; 2022 Jul; 106(1-1):014706. PubMed ID: 35974536
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Visual evaluation of surface anchoring strength by electrohydrodynamic convection of a nematic liquid crystal.
    Choi GJ; Song JM; Jhun CG; Huh JH; Gwag JS
    Phys Rev E; 2017 Oct; 96(4-1):040701. PubMed ID: 29347473
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.