BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 32168762)

  • 1. Standards for Methods Utilizing Environmental DNA for Detection of Fish Species.
    Shu L; Ludwig A; Peng Z
    Genes (Basel); 2020 Mar; 11(3):. PubMed ID: 32168762
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Environmental DNA metabarcoding of water samples as a tool for monitoring Iberian freshwater fish composition.
    Corral-Lou A; Doadrio I
    PLoS One; 2023; 18(10):e0283088. PubMed ID: 37903086
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Environmental DNA metabarcoding for fish community analysis in backwater lakes: A comparison of capture methods.
    Fujii K; Doi H; Matsuoka S; Nagano M; Sato H; Yamanaka H
    PLoS One; 2019; 14(1):e0210357. PubMed ID: 30703107
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monitoring of multiple fish species by quantitative environmental DNA metabarcoding surveys over two summer seasons.
    Wu L; Osugi T; Inagawa T; Okitsu J; Sakamoto S; Minamoto T
    Mol Ecol Resour; 2024 Jan; 24(1):e13875. PubMed ID: 37830396
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of sampling strategies and DNA extraction methods on eDNA metabarcoding: A case study of estuarine fish diversity monitoring.
    Ruan HT; Wang RL; Li HT; Liu L; Kuang TX; Li M; Zou KS
    Zool Res; 2022 Mar; 43(2):192-204. PubMed ID: 35084125
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Measuring global fish species richness with eDNA metabarcoding.
    Jerde CL; Wilson EA; Dressler TL
    Mol Ecol Resour; 2019 Jan; 19(1):19-22. PubMed ID: 30701707
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative environmental DNA metabarcoding shows high potential as a novel approach to quantitatively assess fish community.
    Tsuji S; Inui R; Nakao R; Miyazono S; Saito M; Kono T; Akamatsu Y
    Sci Rep; 2022 Dec; 12(1):21524. PubMed ID: 36513686
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Environmental DNA metabarcoding of freshwater fish in Malaysian tropical rivers using short-read nanopore sequencing as a potential biomonitoring tool.
    Munian K; Ramli FF; Othman N; Mahyudin NAA; Sariyati NH; Abdullah-Fauzi NAF; Haris H; Ilham-Norhakim ML; Abdul-Latiff MAB
    Mol Ecol Resour; 2024 May; 24(4):e13936. PubMed ID: 38419264
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative monitoring of diverse fish communities on a large scale combining eDNA metabarcoding and qPCR.
    Pont D; Meulenbroek P; Bammer V; Dejean T; Erős T; Jean P; Lenhardt M; Nagel C; Pekarik L; Schabuss M; Stoeckle BC; Stoica E; Zornig H; Weigand A; Valentini A
    Mol Ecol Resour; 2023 Feb; 23(2):396-409. PubMed ID: 36151931
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Using eDNA sampling for species-specific fish detection in tropical oceanic samples: limitations and recommendations for future use.
    Gonzalez Colmenares GM; Gonzalez Montes AJ; Harms-Tuohy CA; Schizas NV
    PeerJ; 2023; 11():e14810. PubMed ID: 36751629
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Environmental DNA from Marine Waters and Substrates: Protocols for Sampling and eDNA Extraction.
    Cowart DA; Murphy KR; Cheng CC
    Methods Mol Biol; 2022; 2498():225-251. PubMed ID: 35727547
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integrating invasive species risk assessment into environmental DNA metabarcoding reference libraries.
    Mahon AR; Grey EK; Jerde CL
    Ecol Appl; 2023 Jan; 33(1):e2730. PubMed ID: 36054696
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Environmental DNA Metabarcoding: A Novel Method for Biodiversity Monitoring of Marine Fish Communities.
    Miya M
    Ann Rev Mar Sci; 2022 Jan; 14():161-185. PubMed ID: 34351788
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aquatic suspended particulate matter as source of eDNA for fish metabarcoding.
    Díaz C; Wege FF; Tang CQ; Crampton-Platt A; Rüdel H; Eilebrecht E; Koschorreck J
    Sci Rep; 2020 Sep; 10(1):14352. PubMed ID: 32873823
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatio-temporal variability of eDNA signal and its implication for fish monitoring in lakes.
    Hervé A; Domaizon I; Baudoin JM; Dejean T; Gibert P; Jean P; Peroux T; Raymond JC; Valentini A; Vautier M; Logez M
    PLoS One; 2022; 17(8):e0272660. PubMed ID: 35960745
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Passive eDNA sampling facilitates biodiversity monitoring and rare species detection.
    Chen X; Li S; Zhao J; Yao M
    Environ Int; 2024 May; 187():108706. PubMed ID: 38696978
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative analysis of fish environmental DNA reveals higher sensitivity achieved through targeted sequence-based metabarcoding.
    McCarthy A; Rajabi H; McClenaghan B; Fahner NA; Porter E; Singer GAC; Hajibabaei M
    Mol Ecol Resour; 2023 Apr; 23(3):581-591. PubMed ID: 36366953
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integrating eDNA metabarcoding and simultaneous underwater visual surveys to describe complex fish communities in a marine biodiversity hotspot.
    Valdivia-Carrillo T; Rocha-Olivares A; Reyes-Bonilla H; Domínguez-Contreras JF; Munguia-Vega A
    Mol Ecol Resour; 2021 Jul; 21(5):1558-1574. PubMed ID: 33683812
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative Evaluation of Common Materials as Passive Samplers of Environmental DNA.
    Chen X; Kong Y; Zhang S; Zhao J; Li S; Yao M
    Environ Sci Technol; 2022 Aug; 56(15):10798-10807. PubMed ID: 35856738
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Environmental DNA metabarcoding of lake fish communities reflects long-term data from established survey methods.
    Hänfling B; Lawson Handley L; Read DS; Hahn C; Li J; Nichols P; Blackman RC; Oliver A; Winfield IJ
    Mol Ecol; 2016 Jul; 25(13):3101-19. PubMed ID: 27095076
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.