BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 32168789)

  • 1. Correlative Light and Electron Microscopy (CLEM) Analysis of Nuclear Reorganization Induced by Clustered DNA Damage Upon Charged Particle Irradiation.
    Tonnemacher S; Eltsov M; Jakob B
    Int J Mol Sci; 2020 Mar; 21(6):. PubMed ID: 32168789
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Focused Ion Microbeam Irradiation Induces Clustering of DNA Double-Strand Breaks in Heterochromatin Visualized by Nanoscale-Resolution Electron Microscopy.
    Lorat Y; Reindl J; Isermann A; Rübe C; Friedl AA; Rübe CE
    Int J Mol Sci; 2021 Jul; 22(14):. PubMed ID: 34299263
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Elucidation of the Clustered Nano-Architecture of Radiation-Induced DNA Damage Sites and Surrounding Chromatin in Cancer Cells: A Single Molecule Localization Microscopy Approach.
    Hausmann M; Falk M; Neitzel C; Hofmann A; Biswas A; Gier T; Falkova I; Heermann DW; Hildenbrand G
    Int J Mol Sci; 2021 Mar; 22(7):. PubMed ID: 33807337
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Clustered DNA damage concentrated in particle trajectories causes persistent large-scale rearrangements in chromatin architecture.
    Timm S; Lorat Y; Jakob B; Taucher-Scholz G; Rübe CE
    Radiother Oncol; 2018 Dec; 129(3):600-610. PubMed ID: 30049456
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanoscale analysis of clustered DNA damage after high-LET irradiation by quantitative electron microscopy--the heavy burden to repair.
    Lorat Y; Brunner CU; Schanz S; Jakob B; Taucher-Scholz G; Rübe CE
    DNA Repair (Amst); 2015 Apr; 28():93-106. PubMed ID: 25659339
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Live cell microscopy analysis of radiation-induced DNA double-strand break motion.
    Jakob B; Splinter J; Durante M; Taucher-Scholz G
    Proc Natl Acad Sci U S A; 2009 Mar; 106(9):3172-7. PubMed ID: 19221031
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automated Image Analysis of Transmission Electron Micrographs: Nanoscale Evaluation of Radiation-Induced DNA Damage in the Context of Chromatin.
    Abd Al-Razaq MA; Isermann A; Hecht M; Rübe CE
    Cells; 2023 Oct; 12(20):. PubMed ID: 37887271
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Olaparib and ionizing radiation trigger a cooperative DNA-damage repair response that is impaired by depletion of the VRK1 chromatin kinase.
    Campillo-Marcos I; Lazo PA
    J Exp Clin Cancer Res; 2019 May; 38(1):203. PubMed ID: 31101118
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Visualisation of γH2AX foci caused by heavy ion particle traversal; distinction between core track versus non-track damage.
    Nakajima NI; Brunton H; Watanabe R; Shrikhande A; Hirayama R; Matsufuji N; Fujimori A; Murakami T; Okayasu R; Jeggo P; Shibata A
    PLoS One; 2013; 8(8):e70107. PubMed ID: 23967070
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of Chromatin Structure on the Extent and Distribution of DNA Double Strand Breaks Produced by Ionizing Radiation; Comparative Study of hESC and Differentiated Cells Lines.
    Venkatesh P; Panyutin IV; Remeeva E; Neumann RD; Panyutin IG
    Int J Mol Sci; 2016 Jan; 17(1):. PubMed ID: 26729112
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High resolution imaging of changes in the structure and spatial organization of chromatin, gamma-H2A.X and the MRN complex within etoposide-induced DNA repair foci.
    Dellaire G; Kepkay R; Bazett-Jones DP
    Cell Cycle; 2009 Nov; 8(22):3750-69. PubMed ID: 19855159
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Superresolution light microscopy shows nanostructure of carbon ion radiation-induced DNA double-strand break repair foci.
    Lopez Perez R; Best G; Nicolay NH; Greubel C; Rossberger S; Reindl J; Dollinger G; Weber KJ; Cremer C; Huber PE
    FASEB J; 2016 Aug; 30(8):2767-76. PubMed ID: 27166088
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recruitment of 53BP1 Proteins for DNA Repair and Persistence of Repair Clusters Differ for Cell Types as Detected by Single Molecule Localization Microscopy.
    Bobkova E; Depes D; Lee JH; Jezkova L; Falkova I; Pagacova E; Kopecna O; Zadneprianetc M; Bacikova A; Kulikova E; Smirnova E; Bulanova T; Boreyko A; Krasavin E; Wenz F; Bestvater F; Hildenbrand G; Hausmann M; Falk M
    Int J Mol Sci; 2018 Nov; 19(12):. PubMed ID: 30469529
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficacy of the Combination of a PARP Inhibitor and UVC on Cancer Cells as Imaged by Focus Formation by the DNA Repair-related Protein 53BP1 Linked to Green Fluorescent Protein.
    Tome Y; Uehara F; Miwa S; Yano S; Mii S; Efimova EV; Bouvet M; Kimura H; Tsuchiya H; Kanaya F; Hoffman RM
    Anticancer Res; 2016 Aug; 36(8):3821-6. PubMed ID: 27466483
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Species conserved DNA damage response at the inactive human X chromosome.
    Müller I; Merk B; Voss KO; Averbeck N; Jakob B; Durante M; Taucher-Scholz G
    Mutat Res; 2013 Aug; 756(1-2):30-6. PubMed ID: 23628434
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Repair of DNA damage induced by accelerated heavy ions--a mini review.
    Okayasu R
    Int J Cancer; 2012 Mar; 130(5):991-1000. PubMed ID: 21935920
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Advances in research of DNA damage and repair in cells exposed to various types of ionizing radiation in the era of super-resolution optical microscopy.
    Falk M; Hausmann M
    Cas Lek Cesk; 2020; 159(7-8):286-297. PubMed ID: 33445935
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Radiation-induced DNA repair foci: spatio-temporal aspects of formation, application for assessment of radiosensitivity and biological dosimetry.
    Belyaev IY
    Mutat Res; 2010; 704(1-3):132-41. PubMed ID: 20096808
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chromatin compaction protects genomic DNA from radiation damage.
    Takata H; Hanafusa T; Mori T; Shimura M; Iida Y; Ishikawa K; Yoshikawa K; Yoshikawa Y; Maeshima K
    PLoS One; 2013; 8(10):e75622. PubMed ID: 24130727
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Challenges and Contradictions of Metal Nano-Particle Applications for Radio-Sensitivity Enhancement in Cancer Therapy.
    Pagáčová E; Štefančíková L; Schmidt-Kaler F; Hildenbrand G; Vičar T; Depeš D; Lee JH; Bestvater F; Lacombe S; Porcel E; Roux S; Wenz F; Kopečná O; Falková I; Hausmann M; Falk M
    Int J Mol Sci; 2019 Jan; 20(3):. PubMed ID: 30704035
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.