These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 32168805)

  • 1. Microparticle Acoustophoresis in Aluminum-Based Acoustofluidic Devices with PDMS Covers.
    Bodé WN; Jiang L; Laurell T; Bruus H
    Micromachines (Basel); 2020 Mar; 11(3):. PubMed ID: 32168805
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of microchannel protrusion on the bulk acoustic wave-induced acoustofluidics: numerical investigation.
    Zhou Y
    Biomed Microdevices; 2021 Dec; 24(1):7. PubMed ID: 34964071
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impedance matched channel walls in acoustofluidic systems.
    Leibacher I; Schatzer S; Dual J
    Lab Chip; 2014 Feb; 14(3):463-70. PubMed ID: 24310918
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Numerical study of acoustophoretic motion of particles in a PDMS microchannel driven by surface acoustic waves.
    Nama N; Barnkob R; Mao Z; Kähler CJ; Costanzo F; Huang TJ
    Lab Chip; 2015 Jun; 15(12):2700-9. PubMed ID: 26001199
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Numerical Simulation of Boundary-Driven Acoustic Streaming in Microfluidic Channels with Circular Cross-Sections.
    Lei J; Cheng F; Li K
    Micromachines (Basel); 2020 Feb; 11(3):. PubMed ID: 32111024
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simple and inexpensive micromachined aluminum microfluidic devices for acoustic focusing of particles and cells.
    Gautam GP; Burger T; Wilcox A; Cumbo MJ; Graves SW; Piyasena ME
    Anal Bioanal Chem; 2018 May; 410(14):3385-3394. PubMed ID: 29651523
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influences of microparticle radius and microchannel height on SSAW-based acoustophoretic aggregation.
    Dong J; Liang D; Yang X; Sun C
    Ultrasonics; 2021 Dec; 117():106547. PubMed ID: 34419898
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling of Microdevices for SAW-Based Acoustophoresis - A Study of Boundary Conditions.
    Skov NR; Bruus H
    Micromachines (Basel); 2016 Oct; 7(10):. PubMed ID: 30404354
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acoustophoresis in polymer-based microfluidic devices: Modeling and experimental validation.
    Lickert F; Ohlin M; Bruus H; Ohlsson P
    J Acoust Soc Am; 2021 Jun; 149(6):4281. PubMed ID: 34241446
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Residue-free acoustofluidic manipulation of microparticles via removal of microchannel anechoic corner.
    Khan MS; Sahin MA; Destgeer G; Park J
    Ultrason Sonochem; 2022 Sep; 89():106161. PubMed ID: 36088893
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Numerical study of bulk acoustofluidic devices driven by thin-film transducers and whole-system resonance modes.
    Steckel AG; Bruus H
    J Acoust Soc Am; 2021 Jul; 150(1):634. PubMed ID: 34340467
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modelling of SAW-PDMS acoustofluidics: physical fields and particle motions influenced by different descriptions of the PDMS domain.
    Ni Z; Yin C; Xu G; Xie L; Huang J; Liu S; Tu J; Guo X; Zhang D
    Lab Chip; 2019 Aug; 19(16):2728-2740. PubMed ID: 31292597
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thin film piezoelectrics for bulk acoustic wave (BAW) acoustophoresis.
    Reichert P; Deshmukh D; Lebovitz L; Dual J
    Lab Chip; 2018 Dec; 18(23):3655-3667. PubMed ID: 30374500
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A numerical study of microparticle acoustophoresis driven by acoustic radiation forces and streaming-induced drag forces.
    Muller PB; Barnkob R; Jensen MJ; Bruus H
    Lab Chip; 2012 Nov; 12(22):4617-27. PubMed ID: 23010952
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimization Analysis of Particle Separation Parameters for a Standing Surface Acoustic Wave Acoustofluidic Chip.
    Han J; Hu H; Lei Y; Huang Q; Fu C; Gai C; Ning J
    ACS Omega; 2023 Jan; 8(1):311-323. PubMed ID: 36643460
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Constant-Power versus Constant-Voltage Actuation in Frequency Sweeps for Acoustofluidic Applications.
    Lickert F; Bruus H; Rossi M
    Micromachines (Basel); 2022 Nov; 13(11):. PubMed ID: 36363908
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Additive manufacturing of three-dimensional (3D) microfluidic-based microelectromechanical systems (MEMS) for acoustofluidic applications.
    Cesewski E; Haring AP; Tong Y; Singh M; Thakur R; Laheri S; Read KA; Powell MD; Oestreich KJ; Johnson BN
    Lab Chip; 2018 Jul; 18(14):2087-2098. PubMed ID: 29897358
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Numerical simulation of acoustofluidic manipulation by radiation forces and acoustic streaming for complex particles.
    Hahn P; Leibacher I; Baasch T; Dual J
    Lab Chip; 2015 Nov; 15(22):4302-13. PubMed ID: 26448531
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Formation of inverse Chladni patterns in liquids at microscale: roles of acoustic radiation and streaming-induced drag forces.
    Lei J
    Microfluid Nanofluidics; 2017; 21(3):50. PubMed ID: 32226357
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Magnetic microparticle-polydimethylsiloxane composite for reversible microchannel bonding.
    Tsao CW; Lee YP
    Sci Technol Adv Mater; 2016; 17(1):2-11. PubMed ID: 27877852
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.