These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 32168805)

  • 21. Comparing methods for the modelling of boundary-driven streaming in acoustofluidic devices.
    Lei J; Glynne-Jones P; Hill M
    Microfluid Nanofluidics; 2017; 21(2):23. PubMed ID: 32226356
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Numerical simulation of 3D boundary-driven acoustic streaming in microfluidic devices.
    Lei J; Hill M; Glynne-Jones P
    Lab Chip; 2014 Feb; 14(3):532-41. PubMed ID: 24284651
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Development and characterisation of acoustofluidic devices using detachable electrodes made from PCB.
    Mikhaylov R; Wu F; Wang H; Clayton A; Sun C; Xie Z; Liang D; Dong Y; Yuan F; Moschou D; Wu Z; Shen MH; Yang J; Fu Y; Yang Z; Burton C; Errington RJ; Wiltshire M; Yang X
    Lab Chip; 2020 May; 20(10):1807-1814. PubMed ID: 32319460
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Vertical Hydrodynamic Focusing and Continuous Acoustofluidic Separation of Particles via Upward Migration.
    Ahmed H; Destgeer G; Park J; Jung JH; Sung HJ
    Adv Sci (Weinh); 2018 Feb; 5(2):1700285. PubMed ID: 29619294
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Theory and modeling of nonperturbative effects in thermoviscous acoustofluidics.
    Joergensen JH; Bruus H
    Phys Rev E; 2023 Jan; 107(1-2):015106. PubMed ID: 36797916
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Flexible Ultrasonic Transducer Array with Bulk PZT for Adjuvant Treatment of Bone Injury.
    Liu H; Geng J; Zhu Q; Zhang L; Wang F; Chen T; Sun L
    Sensors (Basel); 2019 Dec; 20(1):. PubMed ID: 31877831
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Flow induced by acoustic streaming on surface-acoustic-wave devices and its application in biofouling removal: a computational study and comparisons to experiment.
    Sankaranarayanan SK; Cular S; Bhethanabotla VR; Joseph B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jun; 77(6 Pt 2):066308. PubMed ID: 18643372
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Acoustic streaming in the transducer plane in ultrasonic particle manipulation devices.
    Lei J; Glynne-Jones P; Hill M
    Lab Chip; 2013 Jun; 13(11):2133-43. PubMed ID: 23609455
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Theory and simulation of electroosmotic suppression of acoustic streaming.
    Winckelmann BG; Bruus H
    J Acoust Soc Am; 2021 Jun; 149(6):3917. PubMed ID: 34241445
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The effect of microchannel height on the acoustophoretic motion of sub-micron particles.
    Lai TW; Tennakoon T; Chan KC; Liu CH; Chao CYH; Fu SC
    Ultrasonics; 2024 Jan; 136():107126. PubMed ID: 37553269
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Acoustofluidics 14: Applications of acoustic streaming in microfluidic devices.
    Wiklund M; Green R; Ohlin M
    Lab Chip; 2012 Jul; 12(14):2438-51. PubMed ID: 22688253
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mixing high-viscosity fluids via acoustically driven bubbles.
    Orbay S; Ozcelik A; Lata J; Kaynak M; Wu M; Huang TJ
    J Micromech Microeng; 2017; 27(1):. PubMed ID: 31588165
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Improving acoustic streaming effects in fluidic systems by matching SU-8 and polydimethylsiloxane layers.
    Catarino SO; Minas G; Miranda JM
    Ultrasonics; 2016 Jul; 69():47-57. PubMed ID: 27044029
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A Pumpless Acoustofluidic Platform for Size-Selective Concentration and Separation of Microparticles.
    Ahmed H; Destgeer G; Park J; Jung JH; Ahmad R; Park K; Sung HJ
    Anal Chem; 2017 Dec; 89(24):13575-13581. PubMed ID: 29156880
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Separation of 300 and 100 nm Particles in Fabry-Perot Acoustofluidic Resonators.
    Sehgal P; Kirby BJ
    Anal Chem; 2017 Nov; 89(22):12192-12200. PubMed ID: 29039191
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Acoustic radiation- and streaming-induced microparticle velocities determined by microparticle image velocimetry in an ultrasound symmetry plane.
    Barnkob R; Augustsson P; Laurell T; Bruus H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Nov; 86(5 Pt 2):056307. PubMed ID: 23214876
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Acoustofluidics 10: scaling laws in acoustophoresis.
    Bruus H
    Lab Chip; 2012 May; 12(9):1578-86. PubMed ID: 22430330
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fabrication and Operation of Acoustofluidic Devices Supporting Bulk Acoustic Standing Waves for Sheathless Focusing of Particles.
    Shields CW; Cruz DF; Ohiri KA; Yellen BB; Lopez GP
    J Vis Exp; 2016 Mar; (109):. PubMed ID: 27022681
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Milling Positive Master for Polydimethylsiloxane Microfluidic Devices: The Microfabrication and Roughness Issues.
    Zhou Z; Chen D; Wang X; Jiang J
    Micromachines (Basel); 2017 Sep; 8(10):. PubMed ID: 30400477
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comparison of Acoustic Streaming Flow Patterns Induced by Solid, Liquid and Gas Obstructions.
    Lu HF; Tien WH
    Micromachines (Basel); 2020 Sep; 11(10):. PubMed ID: 32993101
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.