These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
164 related articles for article (PubMed ID: 32168921)
1. Study on the Antiviral Activities and Hemagglutinin-Based Molecular Mechanism of Novel Chlorogenin 3- Shi WZ; Jiang LZ; Song GP; Wang S; Xiong P; Ke CW Viruses; 2020 Mar; 12(3):. PubMed ID: 32168921 [TBL] [Abstract][Full Text] [Related]
2. Unique Infectious Strategy of H5N1 Avian Influenza Virus Is Governed by the Acid-Destabilized Property of Hemagglutinin. Daidoji T; Watanabe Y; Arai Y; Kajikawa J; Hirose R; Nakaya T Viral Immunol; 2017; 30(6):398-407. PubMed ID: 28654310 [TBL] [Abstract][Full Text] [Related]
3. An Oleanolic Acid Derivative Inhibits Hemagglutinin-Mediated Entry of Influenza A Virus. Ye M; Liao Y; Wu L; Qi W; Choudhry N; Liu Y; Chen W; Song G; Chen J Viruses; 2020 Feb; 12(2):. PubMed ID: 32085430 [TBL] [Abstract][Full Text] [Related]
4. CL-385319 inhibits H5N1 avian influenza A virus infection by blocking viral entry. Liu S; Li R; Zhang R; Chan CC; Xi B; Zhu Z; Yang J; Poon VK; Zhou J; Chen M; Münch J; Kirchhoff F; Pleschka S; Haarmann T; Dietrich U; Pan C; Du L; Jiang S; Zheng B Eur J Pharmacol; 2011 Jun; 660(2-3):460-7. PubMed ID: 21536025 [TBL] [Abstract][Full Text] [Related]
5. Incorporation of privileged structures into 3-O-β-chacotriosyl ursolic acid can enhance inhibiting the entry of the H5N1 virus. Li H; Chen L; Li S; Liao Y; Wang L; Liu Z; Liu S; Song G Bioorg Med Chem Lett; 2019 Sep; 29(18):2675-2680. PubMed ID: 31371135 [TBL] [Abstract][Full Text] [Related]
6. Mechanisms of the action of povidone-iodine against human and avian influenza A viruses: its effects on hemagglutination and sialidase activities. Sriwilaijaroen N; Wilairat P; Hiramatsu H; Takahashi T; Suzuki T; Ito M; Ito Y; Tashiro M; Suzuki Y Virol J; 2009 Aug; 6():124. PubMed ID: 19678928 [TBL] [Abstract][Full Text] [Related]
7. Receptor specificity and erythrocyte binding preferences of avian influenza viruses isolated from India. Pawar SD; Parkhi SS; Koratkar SS; Mishra AC Virol J; 2012 Oct; 9():251. PubMed ID: 23110802 [TBL] [Abstract][Full Text] [Related]
8. Design, synthesis and biological evaluation of novel L-ascorbic acid-conjugated pentacyclic triterpene derivatives as potential influenza virus entry inhibitors. Wang H; Xu R; Shi Y; Si L; Jiao P; Fan Z; Han X; Wu X; Zhou X; Yu F; Zhang Y; Zhang L; Zhang L; Zhou D; Xiao S Eur J Med Chem; 2016 Mar; 110():376-88. PubMed ID: 26866456 [TBL] [Abstract][Full Text] [Related]
9. Selection of an antiviral RNA aptamer against hemagglutinin of the subtype H5 avian influenza virus. Park SY; Kim S; Yoon H; Kim KB; Kalme SS; Oh S; Song CS; Kim DE Nucleic Acid Ther; 2011 Dec; 21(6):395-402. PubMed ID: 22017542 [TBL] [Abstract][Full Text] [Related]
10. HA-Dependent Tropism of H5N1 and H7N9 Influenza Viruses to Human Endothelial Cells Is Determined by Reduced Stability of the HA, Which Allows the Virus To Cope with Inefficient Endosomal Acidification and Constitutively Expressed IFITM3. Hensen L; Matrosovich T; Roth K; Klenk HD; Matrosovich M J Virol; 2019 Dec; 94(1):. PubMed ID: 31597765 [TBL] [Abstract][Full Text] [Related]
11. A histidine residue of the influenza virus hemagglutinin controls the pH dependence of the conformational change mediating membrane fusion. Mair CM; Meyer T; Schneider K; Huang Q; Veit M; Herrmann A J Virol; 2014 Nov; 88(22):13189-200. PubMed ID: 25187542 [TBL] [Abstract][Full Text] [Related]
12. pH Optimum of Hemagglutinin-Mediated Membrane Fusion Determines Sensitivity of Influenza A Viruses to the Interferon-Induced Antiviral State and IFITMs. Gerlach T; Hensen L; Matrosovich T; Bergmann J; Winkler M; Peteranderl C; Klenk HD; Weber F; Herold S; Pöhlmann S; Matrosovich M J Virol; 2017 Jun; 91(11):. PubMed ID: 28356532 [TBL] [Abstract][Full Text] [Related]
13. A novel humanized antibody neutralizes H5N1 influenza virus via two different mechanisms. Tan Y; Ng Q; Jia Q; Kwang J; He F J Virol; 2015 Apr; 89(7):3712-22. PubMed ID: 25609802 [TBL] [Abstract][Full Text] [Related]
14. A Dual Motif in the Hemagglutinin of H5N1 Goose/Guangdong-Like Highly Pathogenic Avian Influenza Virus Strains Is Conserved from Their Early Evolution and Increases both Membrane Fusion pH and Virulence. Wessels U; Abdelwhab EM; Veits J; Hoffmann D; Mamerow S; Stech O; Hellert J; Beer M; Mettenleiter TC; Stech J J Virol; 2018 Sep; 92(17):. PubMed ID: 29899102 [TBL] [Abstract][Full Text] [Related]
15. Structure-activity relationships of saponin derivatives: a series of entry inhibitors for highly pathogenic H5N1 influenza virus. Ding N; Chen Q; Zhang W; Ren S; Guo Y; Li Y Eur J Med Chem; 2012 Jul; 53():316-26. PubMed ID: 22575533 [TBL] [Abstract][Full Text] [Related]
16. Structure-aided optimization of 3-O-β-chacotriosyl epiursolic acid derivatives as novel H5N1 virus entry inhibitors. Li S; Jia X; Li H; Ye Y; Zhang X; Gao Y; Guo G; Liu S; Song G Bioorg Med Chem Lett; 2020 Nov; 30(22):127518. PubMed ID: 32882419 [TBL] [Abstract][Full Text] [Related]
17. An induced pocket for the binding of potent fusion inhibitor CL-385319 with H5N1 influenza virus hemagglutinin. Li R; Song D; Zhu Z; Xu H; Liu S PLoS One; 2012; 7(8):e41956. PubMed ID: 22876294 [TBL] [Abstract][Full Text] [Related]