These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
208 related articles for article (PubMed ID: 32169095)
41. Ranking the biases: The choice of OTUs vs. ASVs in 16S rRNA amplicon data analysis has stronger effects on diversity measures than rarefaction and OTU identity threshold. Chiarello M; McCauley M; Villéger S; Jackson CR PLoS One; 2022; 17(2):e0264443. PubMed ID: 35202411 [TBL] [Abstract][Full Text] [Related]
42. MicroPheno: predicting environments and host phenotypes from 16S rRNA gene sequencing using a k-mer based representation of shallow sub-samples. Asgari E; Garakani K; McHardy AC; Mofrad MRK Bioinformatics; 2018 Jul; 34(13):i32-i42. PubMed ID: 29950008 [TBL] [Abstract][Full Text] [Related]
43. Hot topic: 16S rRNA gene sequencing reveals the microbiome of the virgin and pregnant bovine uterus. Moore SG; Ericsson AC; Poock SE; Melendez P; Lucy MC J Dairy Sci; 2017 Jun; 100(6):4953-4960. PubMed ID: 28434745 [TBL] [Abstract][Full Text] [Related]
44. Metatax: Metataxonomics with a Compi-Based Pipeline for Precision Medicine. Graña-Castro O; López-Fernández H; Nogueira-Rodríguez A; Fdez-Riverola F; Al-Shahrour F; Glez-Peña D Interdiscip Sci; 2020 Sep; 12(3):252-257. PubMed ID: 32350726 [TBL] [Abstract][Full Text] [Related]
45. Interpretations of Environmental Microbial Community Studies Are Biased by the Selected 16S rRNA (Gene) Amplicon Sequencing Pipeline. Straub D; Blackwell N; Langarica-Fuentes A; Peltzer A; Nahnsen S; Kleindienst S Front Microbiol; 2020; 11():550420. PubMed ID: 33193131 [TBL] [Abstract][Full Text] [Related]
46. Hybrid-denovo: a de novo OTU-picking pipeline integrating single-end and paired-end 16S sequence tags. Chen X; Johnson S; Jeraldo P; Wang J; Chia N; Kocher JA; Chen J Gigascience; 2018 Mar; 7(3):1-7. PubMed ID: 29267858 [TBL] [Abstract][Full Text] [Related]
47. Reliability of species detection in 16S microbiome analysis: Comparison of five widely used pipelines and recommendations for a more standardized approach. Hiergeist A; Ruelle J; Emler S; Gessner A PLoS One; 2023; 18(2):e0280870. PubMed ID: 36795699 [TBL] [Abstract][Full Text] [Related]
49. Comparison of Bioinformatics Pipelines and Operating Systems for the Analyses of 16S rRNA Gene Amplicon Sequences in Human Fecal Samples. Marizzoni M; Gurry T; Provasi S; Greub G; Lopizzo N; Ribaldi F; Festari C; Mazzelli M; Mombelli E; Salvatore M; Mirabelli P; Franzese M; Soricelli A; Frisoni GB; Cattaneo A Front Microbiol; 2020; 11():1262. PubMed ID: 32636817 [TBL] [Abstract][Full Text] [Related]
50. 16S rRNA Gene Copy Number Normalization Does Not Provide More Reliable Conclusions in Metataxonomic Surveys. Starke R; Pylro VS; Morais DK Microb Ecol; 2021 Feb; 81(2):535-539. PubMed ID: 32862246 [TBL] [Abstract][Full Text] [Related]
51. Analysis of 16S rRNA Gene Amplicon Sequences Using the QIIME Software Package. Lawley B; Tannock GW Methods Mol Biol; 2017; 1537():153-163. PubMed ID: 27924593 [TBL] [Abstract][Full Text] [Related]
52. Using 16S rRNA gene as marker to detect unknown bacteria in microbial communities. Tran Q; Pham DT; Phan V BMC Bioinformatics; 2017 Dec; 18(Suppl 14):499. PubMed ID: 29297282 [TBL] [Abstract][Full Text] [Related]
53. Improved OTU-picking using long-read 16S rRNA gene amplicon sequencing and generic hierarchical clustering. Franzén O; Hu J; Bao X; Itzkowitz SH; Peter I; Bashir A Microbiome; 2015 Oct; 3():43. PubMed ID: 26434730 [TBL] [Abstract][Full Text] [Related]
54. Microbial community profiling of fresh basil and pitfalls in taxonomic assignment of enterobacterial pathogenic species based upon 16S rRNA amplicon sequencing. Ceuppens S; De Coninck D; Bottledoorn N; Van Nieuwerburgh F; Uyttendaele M Int J Food Microbiol; 2017 Sep; 257():148-156. PubMed ID: 28666129 [TBL] [Abstract][Full Text] [Related]
55. Normalization and microbial differential abundance strategies depend upon data characteristics. Weiss S; Xu ZZ; Peddada S; Amir A; Bittinger K; Gonzalez A; Lozupone C; Zaneveld JR; Vázquez-Baeza Y; Birmingham A; Hyde ER; Knight R Microbiome; 2017 Mar; 5(1):27. PubMed ID: 28253908 [TBL] [Abstract][Full Text] [Related]
56. Assessing the consequences of denoising marker-based metagenomic data. Gaspar JM; Thomas WK PLoS One; 2013; 8(3):e60458. PubMed ID: 23536909 [TBL] [Abstract][Full Text] [Related]
57. Updating the 97% identity threshold for 16S ribosomal RNA OTUs. Edgar RC Bioinformatics; 2018 Jul; 34(14):2371-2375. PubMed ID: 29506021 [TBL] [Abstract][Full Text] [Related]
58. MetaSquare: an integrated metadatabase of 16S rRNA gene amplicon for microbiome taxonomic classification. Liao CC; Fu PY; Huang CW; Chuang CH; Yen Y; Lin CY; Chen SH Bioinformatics; 2022 May; 38(10):2930-2931. PubMed ID: 35561196 [TBL] [Abstract][Full Text] [Related]
59. [Analysis of the dynamic changes in gut microbiota in patients with extremely severe burns by 16S ribosomal RNA high-throughput sequencing technology]. Pan YY; Fan YF; Li JL; Cui SY; Huang N; Jin GY; Chen C; Zhang C Zhonghua Shao Shang Za Zhi; 2020 Dec; 36(12):1159-1166. PubMed ID: 33379852 [No Abstract] [Full Text] [Related]
60. Microbiota analysis optimization for human bronchoalveolar lavage fluid. Schneeberger PHH; Prescod J; Levy L; Hwang D; Martinu T; Coburn B Microbiome; 2019 Oct; 7(1):141. PubMed ID: 31665066 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]