These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 32169659)

  • 1. Isolation and identification of entomopathogenic fungus from Eastern Ghats of South Indian forest soil and their efficacy as biopesticide for mosquito control.
    Vivekanandhan P; Bedini S; Shivakumar MS
    Parasitol Int; 2020 Jun; 76():102099. PubMed ID: 32169659
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Larvicidal toxicity of Metarhizium anisopliae metabolites against three mosquito species and non-targeting organisms.
    Vivekanandhan P; Swathy K; Kalaimurugan D; Ramachandran M; Yuvaraj A; Kumar AN; Manikandan AT; Poovarasan N; Shivakumar MS; Kweka EJ
    PLoS One; 2020; 15(5):e0232172. PubMed ID: 32365106
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential Pathogenicity of Metarhizium Blastospores and Conidia Against Larvae of Three Mosquito Species.
    Alkhaibari AM; Carolino AT; Bull JC; Samuels RI; Butt TM
    J Med Entomol; 2017 May; 54(3):696-704. PubMed ID: 28399202
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Isolation and growth inhibition potential of entomopathogenic nematodes against three public health important mosquito vectors.
    Dilipkumar A; Raja Ramalingam K; Chinnaperumal K; Govindasamy B; Paramasivam D; Dhayalan A; Pachiappan P
    Exp Parasitol; 2019 Feb; 197():76-84. PubMed ID: 30414843
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Insecticidal potency of Aspergillus terreus against larvae and pupae of three mosquito species Anopheles stephensi, Culex quinquefasciatus, and Aedes aegypti.
    Ragavendran C; Natarajan D
    Environ Sci Pollut Res Int; 2015 Nov; 22(21):17224-37. PubMed ID: 26139412
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Larvicidal activity of Blumea eriantha essential oil and its components against six mosquito species, including Zika virus vectors: the promising potential of (4E,6Z)-allo-ocimene, carvotanacetone and dodecyl acetate.
    Benelli G; Govindarajan M; Rajeswary M; Senthilmurugan S; Vijayan P; Alharbi NS; Kadaikunnan S; Khaled JM
    Parasitol Res; 2017 Apr; 116(4):1175-1188. PubMed ID: 28168560
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mosquito larvicidal potential of silver nanoparticles synthesized using Chomelia asiatica (Rubiaceae) against Anopheles stephensi, Aedes aegypti, and Culex quinquefasciatus (Diptera: Culicidae).
    Muthukumaran U; Govindarajan M; Rajeswary M
    Parasitol Res; 2015 Mar; 114(3):989-99. PubMed ID: 25544703
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Insecticidal potency of bacterial species Bacillus thuringiensis SV2 and Serratia nematodiphila SV6 against larvae of mosquito species Aedes aegypti, Anopheles stephensi, and Culex quinquefasciatus.
    Patil CD; Patil SV; Salunke BK; Salunkhe RB
    Parasitol Res; 2012 May; 110(5):1841-7. PubMed ID: 22065062
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protection against mosquito vectors Aedes aegypti, Anopheles stephensi and Culex quinquefasciatus using a novel insect repellent, ethyl anthranilate.
    Islam J; Zaman K; Tyagi V; Duarah S; Dhiman S; Chattopadhyay P
    Acta Trop; 2017 Oct; 174():56-63. PubMed ID: 28666890
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Insecticidal potential of Ocimum canum plant extracts against Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus larval and adult mosquitoes (Diptera: Culicidae).
    Murugan JM; Ramkumar G; Shivakumar MS
    Nat Prod Res; 2016; 30(10):1193-6. PubMed ID: 26135241
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spectral and HRTEM analyses of Annona muricata leaf extract mediated silver nanoparticles and its Larvicidal efficacy against three mosquito vectors Anopheles stephensi, Culex quinquefasciatus, and Aedes aegypti.
    Santhosh SB; Ragavendran C; Natarajan D
    J Photochem Photobiol B; 2015 Dec; 153():184-90. PubMed ID: 26410042
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Nonlive Preparation of
    Caragata EP; Otero LM; Carlson JS; Borhani Dizaji N; Dimopoulos G
    Appl Environ Microbiol; 2020 May; 86(11):. PubMed ID: 32220845
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cladophialophora bantiana metabolites are efficient in the larvicidal and ovicidal control of Aedes aegypti, and Culex quinquefasciatus and have low toxicity in zebrafish embryo.
    Ragavendran C; Balasubramani G; Tijo C; Manigandan V; Kweka EJ; Karthika P; Sivasankar P; Thomas A; Natarajan D; Nakouti I; Malafaia G
    Sci Total Environ; 2022 Dec; 852():158502. PubMed ID: 36058332
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pathogenicity of the Fungus, Aspergillus clavatus, isolated from the locust, Oedaleus senegalensis, against larvae of the mosquitoes Aedes aegypti, Anopheles gambiae and Culex quinquefasciatus.
    Seye F; Faye O; Ndiaye M; Njie E; Marie Afoutou J
    J Insect Sci; 2009; 9():1-7. PubMed ID: 20050773
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The combination of the entomopathogenic fungus Metarhizium anisopliae with the insecticide Imidacloprid increases virulence against the dengue vector Aedes aegypti (Diptera: Culicidae).
    Paula AR; Carolino AT; Paula CO; Samuels RI
    Parasit Vectors; 2011 Jan; 4():8. PubMed ID: 21266078
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Occurrence of entomopathogenic hypocrealean fungi in mosquitoes and their larval habitats in Central Brazil, and activity against Aedes aegypti.
    Rocha LFN; Rodrigues J; Martinez JM; Pereira TCD; Neto JRC; Montalva C; Humber RA; Luz C
    J Invertebr Pathol; 2022 Oct; 194():107803. PubMed ID: 35931180
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Larvicidal activity, route of interaction and ultrastructural changes in Aedes aegypti exposed to entomopathogenic fungi.
    de Oliveira Barbosa Bitencourt R; Reis Dos Santos Mallet J; Mesquita E; Silva Gôlo P; Fiorotti J; Rita Elias Pinheiro Bittencourt V; Guedes Pontes E; da Costa Angelo I
    Acta Trop; 2021 Jan; 213():105732. PubMed ID: 33188750
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of some aromatic plant extracts for mosquito larvicidal potential against Culex quinquefasciatus, Aedes aegypti, and Anopheles stephensi.
    Jayaraman M; Senthilkumar A; Venkatesalu V
    Parasitol Res; 2015 Apr; 114(4):1511-8. PubMed ID: 25630696
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluating the carnivorous efficacy of Utricularia aurea (Lamiales: Lentibulariaceae) on the larval stages of Anopheles stephensi, Culex quinquefasciatus, and Aedes aegypti (Diptera: Culicidae).
    Mohanty AK; Govekar A; de Souza C; Mohapatra A; Janarthanam MK; Vukanti R; Montemarano JJ; Balabaskaran Nina P
    J Med Entomol; 2024 May; 61(3):719-725. PubMed ID: 38521610
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Larvicidal efficacy of Ficus benghalensis L. plant leaf extracts against Culex quinquefasciatus Say, Aedes aegypti L. and Anopheles stephensi L. (Diptera: Culicidae).
    Govindarajan M
    Eur Rev Med Pharmacol Sci; 2010 Feb; 14(2):107-11. PubMed ID: 20329569
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.