These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
172 related articles for article (PubMed ID: 32169717)
41. Application of a new adsorbent for fluoride removal from aqueous solutions. Srivastav AL; Singh PK; Srivastava V; Sharma YC J Hazard Mater; 2013 Dec; 263 Pt 2():342-52. PubMed ID: 23711596 [TBL] [Abstract][Full Text] [Related]
42. A dual-ion electrochemistry deionization system based on AgCl-Na Chen F; Huang Y; Guo L; Ding M; Yang HY Nanoscale; 2017 Jul; 9(28):10101-10108. PubMed ID: 28695930 [TBL] [Abstract][Full Text] [Related]
43. Removal of sulfamethoxazole antibiotic from aqueous solutions by silver@reduced graphene oxide nanocomposite. Keshvardoostchokami M; Rasooli S; Zamani A; Parizanganeh A; Piri F Environ Monit Assess; 2019 May; 191(6):374. PubMed ID: 31104171 [TBL] [Abstract][Full Text] [Related]
44. Adsorption of Cd and Ni from water by graphene oxide and graphene oxide-almond shell composite. Yari Moghaddam N; Lorestani B; Cheraghi M; Jamehbozorgi S Water Environ Res; 2019 Jun; 91(6):475-482. PubMed ID: 30698871 [TBL] [Abstract][Full Text] [Related]
45. Self-assembly of glucose oxidase on reduced graphene oxide-magnetic nanoparticles nanocomposite-based direct electrochemistry for reagentless glucose biosensor. Pakapongpan S; Poo-Arporn RP Mater Sci Eng C Mater Biol Appl; 2017 Jul; 76():398-405. PubMed ID: 28482543 [TBL] [Abstract][Full Text] [Related]
46. Optimization of salt adsorption rate in membrane capacitive deionization. Zhao R; Satpradit O; Rijnaarts HH; Biesheuvel PM; van der Wal A Water Res; 2013 Apr; 47(5):1941-52. PubMed ID: 23395310 [TBL] [Abstract][Full Text] [Related]
47. Capacitive deionization of arsenic-contaminated groundwater in a single-pass mode. Fan CS; Liou SYH; Hou CH Chemosphere; 2017 Oct; 184():924-931. PubMed ID: 28655111 [TBL] [Abstract][Full Text] [Related]
48. Electrochemical treatment of evaporated residue of soak liquor generated from leather industry. Boopathy R; Sekaran G J Hazard Mater; 2013 Sep; 260():286-95. PubMed ID: 23770619 [TBL] [Abstract][Full Text] [Related]
50. Comparative study of arsenic removal by iron using electrocoagulation and chemical coagulation. Lakshmanan D; Clifford DA; Samanta G Water Res; 2010 Nov; 44(19):5641-52. PubMed ID: 20605038 [TBL] [Abstract][Full Text] [Related]
51. Electrically enhanced adsorption and green regeneration for fluoride removal using Ti(OH) Li Y; Zhang C; Jiang Y; Wang TJ Chemosphere; 2018 Jun; 200():554-560. PubMed ID: 29505927 [TBL] [Abstract][Full Text] [Related]
52. Design of a new nanocomposite between bismuth nanoparticles and graphene oxide for development of electrochemical sensors. Bindewald EH; Schibelbain AF; Papi MAP; Neiva EGC; Zarbin AJG; Bergamini MF; Marcolino-JĂșnior LH Mater Sci Eng C Mater Biol Appl; 2017 Oct; 79():262-269. PubMed ID: 28629017 [TBL] [Abstract][Full Text] [Related]
53. Nano-manganese oxide and reduced graphene oxide-incorporated polyacrylonitrile fiber mats as an electrode material for capacitive deionization (CDI) technology. Siriwardane IW; Rathuwadu NPW; Dahanayake D; Sandaruwan C; de Silva RM; de Silva KMN Nanoscale Adv; 2021 May; 3(9):2585-2597. PubMed ID: 36134151 [TBL] [Abstract][Full Text] [Related]
54. Asymmetrical removal of sodium and chloride in flow-through capacitive deionization. Algurainy Y; Call DF Water Res; 2020 Sep; 183():116044. PubMed ID: 32721704 [TBL] [Abstract][Full Text] [Related]
55. Fabrication of titanium carburizing electrodes for capacitive deionization. Li W; Lei L; Yun Z; Jiangtao F Water Sci Technol; 2017 Aug; 76(3-4):754-760. PubMed ID: 28799922 [TBL] [Abstract][Full Text] [Related]
56. Facile Fabrication of NiCoAl-Layered Metal Oxide/Graphene Nanosheets for Efficient Capacitive Deionization Defluorination. Li D; Wang S; Wang G; Li C; Che X; Wang S; Zhang Y; Qiu J ACS Appl Mater Interfaces; 2019 Aug; 11(34):31200-31209. PubMed ID: 31390520 [TBL] [Abstract][Full Text] [Related]
57. Removal of cobalt ions from aqueous solution by an amination graphene oxide nanocomposite. Fang F; Kong L; Huang J; Wu S; Zhang K; Wang X; Sun B; Jin Z; Wang J; Huang XJ; Liu J J Hazard Mater; 2014 Apr; 270():1-10. PubMed ID: 24525159 [TBL] [Abstract][Full Text] [Related]
58. Electrodeposition of bismuth at a graphene modified carbon electrode and its application as an easily regenerated sensor for the electrochemical determination of the antimicrobial drug metronidazole. Yu T; Glennon L; Fenelon O; Breslin CB Talanta; 2023 Jan; 251():123758. PubMed ID: 35940113 [TBL] [Abstract][Full Text] [Related]
59. Investigation on removal of hardness ions by capacitive deionization (CDI) for water softening applications. Seo SJ; Jeon H; Lee JK; Kim GY; Park D; Nojima H; Lee J; Moon SH Water Res; 2010 Apr; 44(7):2267-75. PubMed ID: 19897222 [TBL] [Abstract][Full Text] [Related]
60. Membrane-Free Hybrid Capacitive Deionization System Based on Redox Reaction for High-Efficiency NaCl Removal. Wang S; Wang G; Wu T; Li C; Wang Y; Pan X; Zhan F; Zhang Y; Wang S; Qiu J Environ Sci Technol; 2019 Jun; 53(11):6292-6301. PubMed ID: 31094203 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]