BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 32169776)

  • 21. A shear-rate-dependent flow generated via magnetically controlled metachronal motion of artificial cilia.
    Wu A; Abbas SZ; Asghar Z; Sun H; Waqas M; Khan WA
    Biomech Model Mechanobiol; 2020 Oct; 19(5):1713-1724. PubMed ID: 32056033
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A study of unsteady physiological magneto-fluid flow and heat transfer through a finite length channel by peristaltic pumping.
    Tripathi D; Bég OA
    Proc Inst Mech Eng H; 2012 Aug; 226(8):631-44. PubMed ID: 23057236
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Peristaltic propulsion of generalized Burgers' fluids through a non-uniform porous medium: a study of chyme dynamics through the diseased intestine.
    Tripathi D; Anwar Bég O
    Math Biosci; 2014 Feb; 248():67-77. PubMed ID: 24300568
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Electro-Osmosis Modulated Viscoelastic Embryo Transport in Uterine Hydrodynamics: Mathematical Modeling.
    Narla VK; Tripathi D; Anwar Bég O
    J Biomech Eng; 2019 Feb; 141(2):. PubMed ID: 30383183
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Pulsatile magneto-hydrodynamic blood flows through porous blood vessels using a third grade non-Newtonian fluids model.
    Akbarzadeh P
    Comput Methods Programs Biomed; 2016 Apr; 126():3-19. PubMed ID: 26792174
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Double-diffusion convective biomimetic flow of nanofluid in a complex divergent porous wavy medium under magnetic effects.
    Javid K; Hassan M; Tripathi D; Khan S; Bobescu E; Bhatti MM
    J Biol Phys; 2021 Dec; 47(4):477-498. PubMed ID: 34528156
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mathematical modelling of peristaltic propulsion of viscoplastic bio-fluids.
    Tripathi D; Bég OA
    Proc Inst Mech Eng H; 2014 Jan; 228(1):67-88. PubMed ID: 24292011
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mathematica numerical simulation of peristaltic biophysical transport of a fractional viscoelastic fluid through an inclined cylindrical tube.
    Tripathi D; Anwar Bég O
    Comput Methods Biomech Biomed Engin; 2015; 18(15):1648-57. PubMed ID: 25059738
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Thermal convection in nanofluids for peristaltic flow in a nonuniform channel.
    Alhazmi SE; Imran A; Awais M; Abbas M; Alhejaili W; Hamam H; Alhowaity A; Waheed A
    Sci Rep; 2022 Jul; 12(1):12656. PubMed ID: 35879600
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Electroosmotically driven flow of micropolar bingham viscoplastic fluid in a wavy microchannel: application of computational biology stomach anatomy.
    Saleem A; Kiani MN; Nadeem S; Akhtar S; Ghalambaz M; Issakhov A
    Comput Methods Biomech Biomed Engin; 2021 Feb; 24(3):289-298. PubMed ID: 33508967
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Thermal and physical impact of viscoplastic nanoparticles in a complex divergent channel due to peristalsis phenomenon: Heat generation and multiple slip effects.
    Aich W; Javid K; Tag-ElDin ESM; Ghachem K; Ullah I; Iqbal MA; Khan SU; Kolsi L
    Heliyon; 2023 Jul; 9(7):e17644. PubMed ID: 37501997
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Numerical simulation for peristalsis of Carreau-Yasuda nanofluid in curved channel with mixed convection and porous space.
    Tanveer A; Hayat T; Alsaedi A; Ahmad B
    PLoS One; 2017; 12(2):e0170029. PubMed ID: 28151968
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Peristaltic motion of Johnson-Segalman fluid in a curved channel with slip conditions.
    Hina S; Mustafa M; Hayat T
    PLoS One; 2014; 9(12):e114168. PubMed ID: 25474212
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Theoretical analysis of non-Newtonian blood flow in a microchannel.
    Tanveer A; Salahuddin T; Khan M; Malik MY; Alqarni MS
    Comput Methods Programs Biomed; 2020 Jul; 191():105280. PubMed ID: 32066045
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Numerical simulation of electroosmosis regulated peristaltic transport of Bingham nanofluid.
    Tanveer A; Khan M; Salahuddin T; Malik MY
    Comput Methods Programs Biomed; 2019 Oct; 180():105005. PubMed ID: 31421600
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Electro-magnetically modulated self-propulsion of swimming sperms via cervical canal.
    Abdelsalam SI; Velasco-Hernández JX; Zaher AZ
    Biomech Model Mechanobiol; 2021 Jun; 20(3):861-878. PubMed ID: 33791911
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nanoparticle aggregation and electro-osmotic propulsion in peristaltic transport of third-grade nanofluids through porous tube.
    Dolui S; Bhaumik B; De S; Changdar S
    Comput Biol Med; 2024 Jun; 176():108617. PubMed ID: 38772055
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Breakage of non-Newtonian character in flow through a porous medium: evidence from numerical simulation.
    Bleyer J; Coussot P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):063018. PubMed ID: 25019890
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Peristaltic biofluids flow through vertical porous human vessels using third-grade non-Newtonian fluids model.
    Akbarzadeh P
    Biomech Model Mechanobiol; 2018 Feb; 17(1):71-86. PubMed ID: 28785830
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Peristaltic flow of a couple stress fluid in an asymmetric channel.
    Ali N; Hayat T; Sajid M
    Biorheology; 2007; 44(2):125-38. PubMed ID: 17538203
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.