BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

574 related articles for article (PubMed ID: 32169959)

  • 1. Nitrate in 2020: Thirty Years from Transport to Signaling Networks.
    Vidal EA; Alvarez JM; Araus V; Riveras E; Brooks MD; Krouk G; Ruffel S; Lejay L; Crawford NM; Coruzzi GM; Gutiérrez RA
    Plant Cell; 2020 Jul; 32(7):2094-2119. PubMed ID: 32169959
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular Regulation of Nitrate Responses in Plants.
    Zhao L; Liu F; Crawford NM; Wang Y
    Int J Mol Sci; 2018 Jul; 19(7):. PubMed ID: 30011829
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Untangling the molecular mechanisms and functions of nitrate to improve nitrogen use efficiency.
    Iqbal A; Qiang D; Alamzeb M; Xiangru W; Huiping G; Hengheng Z; Nianchang P; Xiling Z; Meizhen S
    J Sci Food Agric; 2020 Feb; 100(3):904-914. PubMed ID: 31612486
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nitrate regulation of AFB3 and NAC4 gene expression in Arabidopsis roots depends on NRT1.1 nitrate transport function.
    Vidal EA; Álvarez JM; Gutiérrez RA
    Plant Signal Behav; 2014; 9(3):e28501. PubMed ID: 24642706
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Nitrate-Inducible NAC Transcription Factor TaNAC2-5A Controls Nitrate Response and Increases Wheat Yield.
    He X; Qu B; Li W; Zhao X; Teng W; Ma W; Ren Y; Li B; Li Z; Tong Y
    Plant Physiol; 2015 Nov; 169(3):1991-2005. PubMed ID: 26371233
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plant nitrate transporters: from gene function to application.
    Fan X; Naz M; Fan X; Xuan W; Miller AJ; Xu G
    J Exp Bot; 2017 May; 68(10):2463-2475. PubMed ID: 28158856
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Uptake, allocation and signaling of nitrate.
    Wang YY; Hsu PK; Tsay YF
    Trends Plant Sci; 2012 Aug; 17(8):458-67. PubMed ID: 22658680
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Finding Balance in Adversity: Nitrate Signaling as the Key to Plant Growth, Resilience, and Stress Response.
    Jia Y; Qin D; Zheng Y; Wang Y
    Int J Mol Sci; 2023 Sep; 24(19):. PubMed ID: 37833854
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nitrate transport and signalling in Arabidopsis.
    Krapp A; David LC; Chardin C; Girin T; Marmagne A; Leprince AS; Chaillou S; Ferrario-Méry S; Meyer C; Daniel-Vedele F
    J Exp Bot; 2014 Mar; 65(3):789-98. PubMed ID: 24532451
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nitrate Transport, Sensing, and Responses in Plants.
    O'Brien JA; Vega A; Bouguyon E; Krouk G; Gojon A; Coruzzi G; Gutiérrez RA
    Mol Plant; 2016 Jun; 9(6):837-56. PubMed ID: 27212387
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional analysis of the OsNPF4.5 nitrate transporter reveals a conserved mycorrhizal pathway of nitrogen acquisition in plants.
    Wang S; Chen A; Xie K; Yang X; Luo Z; Chen J; Zeng D; Ren Y; Yang C; Wang L; Feng H; López-Arredondo DL; Herrera-Estrella LR; Xu G
    Proc Natl Acad Sci U S A; 2020 Jul; 117(28):16649-16659. PubMed ID: 32586957
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Seed characterization and early nitrogen metabolism performance of seedlings from Altiplano and coastal ecotypes of Quinoa.
    Pinto-Irish K; Coba de la Peña T; Ostria-Gallardo E; Ibáñez C; Briones V; Vergara A; Alvarez R; Castro C; Sanhueza C; Castro PA; Bascuñán-Godoy L
    BMC Plant Biol; 2020 Jul; 20(1):343. PubMed ID: 32693791
    [TBL] [Abstract][Full Text] [Related]  

  • 13. NITROGEN RESPONSE DEFICIENCY 1-mediated CHL1 induction contributes to optimized growth performance during altered nitrate availability in Arabidopsis.
    Lee WJ; Truong HA; Trịnh CS; Kim JH; Lee S; Hong SW; Lee H
    Plant J; 2020 Dec; 104(5):1382-1398. PubMed ID: 33048402
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MtNPF6.5 mediates chloride uptake and nitrate preference in Medicago roots.
    Xiao Q; Chen Y; Liu CW; Robson F; Roy S; Cheng X; Wen J; Mysore K; Miller AJ; Murray JD
    EMBO J; 2021 Nov; 40(21):e106847. PubMed ID: 34523752
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Emergence of a new step towards understanding the molecular mechanisms underlying nitrate-regulated gene expression.
    Konishi M; Yanagisawa S
    J Exp Bot; 2014 Oct; 65(19):5589-600. PubMed ID: 25005135
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nitrate signaling: adaptation to fluctuating environments.
    Krouk G; Crawford NM; Coruzzi GM; Tsay YF
    Curr Opin Plant Biol; 2010 Jun; 13(3):266-73. PubMed ID: 20093067
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nitrate transceptor(s) in plants.
    Gojon A; Krouk G; Perrine-Walker F; Laugier E
    J Exp Bot; 2011 Apr; 62(7):2299-308. PubMed ID: 21239382
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Root morphological and proteomic responses to growth restriction in maize plants supplied with sufficient N.
    Yan H; Li K; Ding H; Liao C; Li X; Yuan L; Li C
    J Plant Physiol; 2011 Jul; 168(10):1067-75. PubMed ID: 21353328
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Source and sink mechanisms of nitrogen transport and use.
    Tegeder M; Masclaux-Daubresse C
    New Phytol; 2018 Jan; 217(1):35-53. PubMed ID: 29120059
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of Molecular Integrators Shows that Nitrogen Actively Controls the Phosphate Starvation Response in Plants.
    Medici A; Szponarski W; Dangeville P; Safi A; Dissanayake IM; Saenchai C; Emanuel A; Rubio V; Lacombe B; Ruffel S; Tanurdzic M; Rouached H; Krouk G
    Plant Cell; 2019 May; 31(5):1171-1184. PubMed ID: 30872321
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 29.