These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 32170074)

  • 1. Super-resolution photoacoustic and ultrasound imaging with sparse arrays.
    Vilov S; Arnal B; Hojman E; Eldar YC; Katz O; Bossy E
    Sci Rep; 2020 Mar; 10(1):4637. PubMed ID: 32170074
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sparsity-based photoacoustic image reconstruction with a linear array transducer and direct measurement of the forward model.
    Shang R; Archibald R; Gelb A; Luke GP
    J Biomed Opt; 2018 Dec; 24(3):1-9. PubMed ID: 30550047
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantum limits of super-resolution of optical sparse objects via sparsity constraint.
    Wang H; Han S; Kolobov MI
    Opt Express; 2012 Oct; 20(21):23235-52. PubMed ID: 23188288
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sparsity-based reconstruction for super-resolved limited-view photoacoustic computed tomography deep in a scattering medium.
    Egolf DM; Chee RKW; Zemp RJ
    Opt Lett; 2018 May; 43(10):2221-2224. PubMed ID: 29762557
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fast computation of far-field pulse-echo PSF of arbitrary arrays for large sparse 2-D ultrasound array design.
    Li Z; Chi C
    Ultrasonics; 2018 Mar; 84():63-73. PubMed ID: 29078097
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Overcoming the acoustic diffraction limit in photoacoustic imaging by the localization of flowing absorbers.
    Vilov S; Arnal B; Bossy E
    Opt Lett; 2017 Nov; 42(21):4379-4382. PubMed ID: 29088168
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sparsity-based beamforming to enhance two-dimensional linear-array photoacoustic tomography.
    Paridar R; Mozaffarzadeh M; Periyasamy V; Pramanik M; Mehrmohammadi M; Orooji M
    Ultrasonics; 2019 Jul; 96():55-63. PubMed ID: 31005780
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photoacoustic imaging beyond the acoustic diffraction-limit with dynamic speckle illumination and sparse joint support recovery.
    Hojman E; Chaigne T; Solomon O; Gigan S; Bossy E; Eldar YC; Katz O
    Opt Express; 2017 Mar; 25(5):4875-4886. PubMed ID: 28380755
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two-Dimensional Photoacoustic/Ultrasonic Endoscopic Imaging Based on a Line-Focused Transducer.
    Pang W; Wang Y; Guo L; Wang B; Lai P; Xiao J
    Front Bioeng Biotechnol; 2021; 9():807633. PubMed ID: 35071214
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Breaking the resolution limit in photoacoustic imaging using non-negativity and sparsity.
    Burgholzer P; Bauer-Marschallinger J; Haltmeier M
    Photoacoustics; 2020 Sep; 19():100191. PubMed ID: 32509523
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wideband 2-D sparse array optimization combined with multiline reception for real-time 3-D medical ultrasound.
    Sciallero C; Trucco A
    Ultrasonics; 2021 Mar; 111():106318. PubMed ID: 33333484
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coherent-weighted three-dimensional image reconstruction in linear-array-based photoacoustic tomography.
    Wang D; Wang Y; Zhou Y; Lovell JF; Xia J
    Biomed Opt Express; 2016 May; 7(5):1957-65. PubMed ID: 27231634
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single laser-shot super-resolution photoacoustic tomography with fast sparsity-based reconstruction.
    Egolf D; Barber Q; Zemp R
    Photoacoustics; 2021 Jun; 22():100258. PubMed ID: 33816111
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PA-NeRF, a neural radiance field model for 3D photoacoustic tomography reconstruction from limited Bscan data.
    Zou Y; Lin Y; Zhu Q
    Biomed Opt Express; 2024 Mar; 15(3):1651-1667. PubMed ID: 38495696
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Image Super-Resolution Based on Structure-Modulated Sparse Representation.
    Zhang Y; Liu J; Yang W; Guo Z
    IEEE Trans Image Process; 2015 Sep; 24(9):2797-810. PubMed ID: 25966473
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inverse Problem of Ultrasound Beamforming With Sparsity Constraints and Regularization.
    Ozkan E; Vishnevsky V; Goksel O
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Mar; 65(3):356-365. PubMed ID: 28961111
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reconstruct the Photoacoustic Image Based On Deep Learning with Multi-frequency Ring-shape Transducer Array.
    Lan H; Yang C; Jiang D; Gao F
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():7115-7118. PubMed ID: 31947476
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of lens based photoacoustic imaging system.
    Francis KJ; Chinni B; Channappayya SS; Pachamuthu R; Dogra VS; Rao N
    Photoacoustics; 2017 Dec; 8():37-47. PubMed ID: 29034167
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design Optimization for a 2-D Sparse Transducer Array for 3-D Ultrasound Imaging.
    Choe JW; Oralkan O; Khuri-Yakub PT
    Proc IEEE Ultrason Symp; 2010 Oct; 2010():1928-1931. PubMed ID: 21822365
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modulation of Point Spread Function for Super-Resolution Imaging.
    Lu JY
    IEEE Trans Ultrason Ferroelectr Freq Control; 2024 Jan; 71(1):153-171. PubMed ID: 37988211
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.