These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 3217008)

  • 1. Modulation of rhythmic function in the posterior midbrain.
    Garcia-Rill E; Skinner RD
    Neuroscience; 1988 Nov; 27(2):639-54. PubMed ID: 3217008
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of the extent of pontomesencephalic cholinergic neurons' projections to the thalamus: comparison with projections to midbrain dopaminergic groups.
    Oakman SA; Faris PL; Cozzari C; Hartman BK
    Neuroscience; 1999; 94(2):529-47. PubMed ID: 10579214
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pedunculopontine stimulation induces prolonged activation of pontine reticular neurons.
    Garcia-Rill E; Skinner RD; Miyazato H; Homma Y
    Neuroscience; 2001; 104(2):455-65. PubMed ID: 11377847
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Connections of the mesencephalic locomotor region (MLR) I. Substantia nigra afferents.
    Garcia-Rill E; Skinner RD; Jackson MB; Smith MM
    Brain Res Bull; 1983 Jan; 10(1):57-62. PubMed ID: 6824968
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distribution of reduced-nicotinamide-adenine-dinucleotide-phosphate diaphorase-positive cells and fibers in the cat central nervous system.
    Mizukawa K; Vincent SR; McGeer PL; McGeer EG
    J Comp Neurol; 1989 Jan; 279(2):281-311. PubMed ID: 2913070
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the Role of the Pedunculopontine Nucleus and Mesencephalic Reticular Formation in Locomotion in Nonhuman Primates.
    Goetz L; Piallat B; Bhattacharjee M; Mathieu H; David O; Chabardès S
    J Neurosci; 2016 May; 36(18):4917-29. PubMed ID: 27147647
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distinct Contributions of Mesencephalic Locomotor Region Nuclei to Locomotor Control in the Freely Behaving Mouse.
    Josset N; Roussel M; Lemieux M; Lafrance-Zoubga D; Rastqar A; Bretzner F
    Curr Biol; 2018 Mar; 28(6):884-901.e3. PubMed ID: 29526593
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Locomotor projections from the pedunculopontine nucleus to the spinal cord.
    Skinner RD; Kinjo N; Henderson V; Garcia-Rill E
    Neuroreport; 1990; 1(3-4):183-6. PubMed ID: 2129877
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Depression of muscle and cutaneous afferent-evoked monosynaptic field potentials during fictive locomotion in the cat.
    Perreault MC; Shefchyk SJ; Jimenez I; McCrea DA
    J Physiol; 1999 Dec; 521 Pt 3(Pt 3):691-703. PubMed ID: 10601499
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nocifensive reflex-related on- and off-cells in the pedunculopontine tegmental nucleus, cuneiform nucleus, and lateral dorsal tegmental nucleus.
    Carlson JD; Selden NR; Heinricher MM
    Brain Res; 2005 Nov; 1063(2):187-94. PubMed ID: 16256081
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative distribution of NADPH-diaphorase activity and tyrosine hydroxylase immunoreactivity in the diencephalon and mesencephalon of the domestic chicken (Gallus domesticus).
    Montagnese CM; Csillag A
    Anat Embryol (Berl); 1996 May; 193(5):427-39. PubMed ID: 8729961
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Locomotor modulation of disynaptic EPSPs from the mesencephalic locomotor region in cat motoneurons.
    Degtyarenko AM; Simon ES; Burke RE
    J Neurophysiol; 1998 Dec; 80(6):3284-96. PubMed ID: 9862922
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Is the cuneiform nucleus a critical component of the mesencephalic locomotor region? An examination of the effects of excitotoxic lesions of the cuneiform nucleus on spontaneous and nucleus accumbens induced locomotion.
    Allen LF; Inglis WL; Winn P
    Brain Res Bull; 1996; 41(4):201-10. PubMed ID: 8924029
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quinolinic acid lesions of the pedunculopontine nucleus impair sleep architecture, but not locomotion, exploration, emotionality or working memory in the rat.
    Hernández-Chan NG; Góngora-Alfaro JL; Álvarez-Cervera FJ; Solís-Rodríguez FA; Heredia-López FJ; Arankowsky-Sandoval G
    Behav Brain Res; 2011 Dec; 225(2):482-90. PubMed ID: 21856331
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cholinergic Mesopontine Signals Govern Locomotion and Reward through Dissociable Midbrain Pathways.
    Xiao C; Cho JR; Zhou C; Treweek JB; Chan K; McKinney SL; Yang B; Gradinaru V
    Neuron; 2016 Apr; 90(2):333-47. PubMed ID: 27100197
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural organization of the pedunculopontine nucleus of the tegmentum of the dog midbrain.
    Gorbachevskaya AI; Chivileva OG
    Neurosci Behav Physiol; 2005 Oct; 35(8):793-7. PubMed ID: 16132258
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The mesencephalic locomotor region (MLR) in the rat.
    Skinner RD; Garcia-Rill E
    Brain Res; 1984 Dec; 323(2):385-9. PubMed ID: 6525525
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Activity of medullary reticulospinal neurons during fictive locomotion.
    Perreault MC; Drew T; Rossignol S
    J Neurophysiol; 1993 Jun; 69(6):2232-47. PubMed ID: 8350141
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evidence that mid-lumbar neurones in reflex pathways from group II afferents are involved in locomotion in the cat.
    Edgley SA; Jankowska E; Shefchyk S
    J Physiol; 1988 Sep; 403():57-71. PubMed ID: 3150984
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cholinergic and non-cholinergic afferents of the caudolateral parabrachial nucleus: a role in the long-term enhancement of rapid eye movement sleep.
    Quattrochi J; Datta S; Hobson JA
    Neuroscience; 1998 Apr; 83(4):1123-36. PubMed ID: 9502251
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.