BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 32170657)

  • 1. Vaginal siRNA delivery: overview on novel delivery approaches.
    Baxi K; Sawarkar S; Momin M; Patel V; Fernandes T
    Drug Deliv Transl Res; 2020 Aug; 10(4):962-974. PubMed ID: 32170657
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intravaginal delivery for CRISPR-Cas9 technology: For example, the treatment of HPV infection.
    Zhen S; Chen H; Lu J; Yang X; Tuo X; Chang S; Tian Y; Li X
    J Med Virol; 2023 Feb; 95(2):e28552. PubMed ID: 36734062
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Polymer-based nanocarriers for vaginal drug delivery.
    das Neves J; Nunes R; Machado A; Sarmento B
    Adv Drug Deliv Rev; 2015 Sep; 92():53-70. PubMed ID: 25550217
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biodegradable Film for the Targeted Delivery of siRNA-Loaded Nanoparticles to Vaginal Immune Cells.
    Gu J; Yang S; Ho EA
    Mol Pharm; 2015 Aug; 12(8):2889-903. PubMed ID: 26099315
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mucus-penetrating PEGylated polysuccinimide-based nanocarrier for intravaginal delivery of siRNA battling sexually transmitted infections.
    Currie S; Kim S; Gu X; Ren X; Lin F; Liu S; Yang C; Kim JH; Liu S
    Colloids Surf B Biointerfaces; 2020 Dec; 196():111287. PubMed ID: 32768985
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spray-dried powders enhance vaginal siRNA delivery by potentially modulating the mucus molecular sieve structure.
    Wu N; Zhang X; Li F; Zhang T; Gan Y; Li J
    Int J Nanomedicine; 2015; 10():5383-96. PubMed ID: 26347257
    [TBL] [Abstract][Full Text] [Related]  

  • 7. pH-sensitive dual-preventive siRNA-based nanomicrobicide reactivates autophagy and inhibits HIV infection in vaginal CD4+ cells.
    Yang S; Chen Y; Gu J; Harris A; Su RC; Ho EA
    J Control Release; 2024 Feb; 366():849-863. PubMed ID: 38176469
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intravaginal gene silencing using biodegradable polymer nanoparticles densely loaded with small-interfering RNA.
    Woodrow KA; Cu Y; Booth CJ; Saucier-Sawyer JK; Wood MJ; Saltzman WM
    Nat Mater; 2009 Jun; 8(6):526-33. PubMed ID: 19404239
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of antibody-modified chitosan nanoparticles for the targeted delivery of siRNA across the blood-brain barrier as a strategy for inhibiting HIV replication in astrocytes.
    Gu J; Al-Bayati K; Ho EA
    Drug Deliv Transl Res; 2017 Aug; 7(4):497-506. PubMed ID: 28315051
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Advancements in the field of intravaginal siRNA delivery.
    Yang S; Chen Y; Ahmadie R; Ho EA
    J Control Release; 2013 Apr; 167(1):29-39. PubMed ID: 23298612
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Delivery of siRNA Complexed with Palmitoylated α-Peptide/β-Peptoid Cell-Penetrating Peptidomimetics: Membrane Interaction and Structural Characterization of a Lipid-Based Nanocarrier System.
    Jing X; Foged C; Martin-Bertelsen B; Yaghmur A; Knapp KM; Malmsten M; Franzyk H; Nielsen HM
    Mol Pharm; 2016 Jun; 13(6):1739-49. PubMed ID: 26654841
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Study and Evaluation of the Potential of Lipid Nanocarriers for Transdermal Delivery of siRNA.
    Lee K; Min D; Choi Y; Kim J; Yoon S; Jang J; Park S; Tanaka M; Cho YW; Koo HJ; Jeon H; Choi J
    Biotechnol J; 2020 Dec; 15(12):e2000079. PubMed ID: 32678938
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Progress in Topical siRNA Delivery Approaches for Skin Disorders.
    Aldawsari M; Chougule MB; Babu RJ
    Curr Pharm Des; 2015; 21(31):4594-605. PubMed ID: 26362644
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Promoting Vaginal Distribution of E7 and MCL-1 siRNA-Silencing Nanoparticles for Cervical Cancer Treatment.
    Lechanteur A; Furst T; Evrard B; Delvenne P; Piel G; Hubert P
    Mol Pharm; 2017 May; 14(5):1706-1717. PubMed ID: 28350964
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development and in vivo safety assessment of tenofovir-loaded nanoparticles-in-film as a novel vaginal microbicide delivery system.
    Machado A; Cunha-Reis C; Araújo F; Nunes R; Seabra V; Ferreira D; das Neves J; Sarmento B
    Acta Biomater; 2016 Oct; 44():332-40. PubMed ID: 27544812
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design and development of pH-responsive polyurethane membranes for intravaginal release of nanomedicines.
    Kim S; Traore YL; Ho EA; Shafiq M; Kim SH; Liu S
    Acta Biomater; 2018 Dec; 82():12-23. PubMed ID: 30296620
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Targeted siRNA delivery using aptamer-siRNA chimeras and aptamer-conjugated nanoparticles.
    Sivakumar P; Kim S; Kang HC; Shim MS
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2019 May; 11(3):e1543. PubMed ID: 30070426
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanotechnology-Based Platforms for Vaginal Delivery of Peptide Microbicides.
    Sánchez-López E; Gómara MJ; Haro I
    Curr Med Chem; 2021; 28(22):4356-4379. PubMed ID: 33297908
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An siRNA-based microbicide protects mice from lethal herpes simplex virus 2 infection.
    Palliser D; Chowdhury D; Wang QY; Lee SJ; Bronson RT; Knipe DM; Lieberman J
    Nature; 2006 Jan; 439(7072):89-94. PubMed ID: 16306938
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vaginal gene therapy.
    Rodríguez-Gascón A; Del Pozo-Rodríguez A; Isla A; Solinís MA
    Adv Drug Deliv Rev; 2015 Sep; 92():71-83. PubMed ID: 26189799
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.