These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

313 related articles for article (PubMed ID: 32170798)

  • 1. Rapid identification of an Arabidopsis NLR gene as a candidate conferring susceptibility to Sclerotinia sclerotiorum using time-resolved automated phenotyping.
    Barbacci A; Navaud O; Mbengue M; Barascud M; Godiard L; Khafif M; Lacaze A; Raffaele S
    Plant J; 2020 Jul; 103(2):903-917. PubMed ID: 32170798
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Expression polymorphism at the ARPC4 locus links the actin cytoskeleton with quantitative disease resistance to Sclerotinia sclerotiorum in Arabidopsis thaliana.
    Badet T; Léger O; Barascud M; Voisin D; Sadon P; Vincent R; Le Ru A; Balagué C; Roby D; Raffaele S
    New Phytol; 2019 Apr; 222(1):480-496. PubMed ID: 30393937
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Arabidopsis Mediator Complex Subunit16 Is a Key Component of Basal Resistance against the Necrotrophic Fungal Pathogen Sclerotinia sclerotiorum.
    Wang C; Yao J; Du X; Zhang Y; Sun Y; Rollins JA; Mou Z
    Plant Physiol; 2015 Sep; 169(1):856-72. PubMed ID: 26143252
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Small RNAs from the plant pathogenic fungus Sclerotinia sclerotiorum highlight host candidate genes associated with quantitative disease resistance.
    Derbyshire M; Mbengue M; Barascud M; Navaud O; Raffaele S
    Mol Plant Pathol; 2019 Sep; 20(9):1279-1297. PubMed ID: 31361080
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phylotranscriptomics of the Pentapetalae Reveals Frequent Regulatory Variation in Plant Local Responses to the Fungal Pathogen
    Sucher J; Mbengue M; Dresen A; Barascud M; Didelon M; Barbacci A; Raffaele S
    Plant Cell; 2020 Jun; 32(6):1820-1844. PubMed ID: 32265317
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Parallel evolution of the POQR prolyl oligo peptidase gene conferring plant quantitative disease resistance.
    Badet T; Voisin D; Mbengue M; Barascud M; Sucher J; Sadon P; Balagué C; Roby D; Raffaele S
    PLoS Genet; 2017 Dec; 13(12):e1007143. PubMed ID: 29272270
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative disease resistance to the bacterial pathogen Xanthomonas campestris involves an Arabidopsis immune receptor pair and a gene of unknown function.
    Debieu M; Huard-Chauveau C; Genissel A; Roux F; Roby D
    Mol Plant Pathol; 2016 May; 17(4):510-20. PubMed ID: 26212639
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Arabidopsis receptor-like protein30 and receptor-like kinase suppressor of BIR1-1/EVERSHED mediate innate immunity to necrotrophic fungi.
    Zhang W; Fraiture M; Kolb D; Löffelhardt B; Desaki Y; Boutrot FF; Tör M; Zipfel C; Gust AA; Brunner F
    Plant Cell; 2013 Oct; 25(10):4227-41. PubMed ID: 24104566
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Overexpression of AtWRKY28 and AtWRKY75 in Arabidopsis enhances resistance to oxalic acid and Sclerotinia sclerotiorum.
    Chen X; Liu J; Lin G; Wang A; Wang Z; Lu G
    Plant Cell Rep; 2013 Oct; 32(10):1589-99. PubMed ID: 23749099
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Defense against Sclerotinia sclerotiorum in Arabidopsis is dependent on jasmonic acid, salicylic acid, and ethylene signaling.
    Guo X; Stotz HU
    Mol Plant Microbe Interact; 2007 Nov; 20(11):1384-95. PubMed ID: 17977150
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Jasmonate-dependent and COI1-independent defense responses against Sclerotinia sclerotiorum in Arabidopsis thaliana: auxin is part of COI1-independent defense signaling.
    Stotz HU; Jikumaru Y; Shimada Y; Sasaki E; Stingl N; Mueller MJ; Kamiya Y
    Plant Cell Physiol; 2011 Nov; 52(11):1941-56. PubMed ID: 21937677
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A cerato-platanin protein SsCP1 targets plant PR1 and contributes to virulence of Sclerotinia sclerotiorum.
    Yang G; Tang L; Gong Y; Xie J; Fu Y; Jiang D; Li G; Collinge DB; Chen W; Cheng J
    New Phytol; 2018 Jan; 217(2):739-755. PubMed ID: 29076546
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nitric oxide participates in the complex interplay of defense-related signaling pathways controlling disease resistance to Sclerotinia sclerotiorum in Arabidopsis thaliana.
    Perchepied L; Balagué C; Riou C; Claudel-Renard C; Rivière N; Grezes-Besset B; Roby D
    Mol Plant Microbe Interact; 2010 Jul; 23(7):846-60. PubMed ID: 20521948
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two unequally redundant "helper" immune receptor families mediate Arabidopsis thaliana intracellular "sensor" immune receptor functions.
    Saile SC; Jacob P; Castel B; Jubic LM; Salas-Gonzáles I; Bäcker M; Jones JDG; Dangl JL; El Kasmi F
    PLoS Biol; 2020 Sep; 18(9):e3000783. PubMed ID: 32925907
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tight regulation of the interaction between Brassica napus and Sclerotinia sclerotiorum at the microRNA level.
    Cao JY; Xu YP; Zhao L; Li SS; Cai XZ
    Plant Mol Biol; 2016 Sep; 92(1-2):39-55. PubMed ID: 27325118
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of camalexin, indole glucosinolates, and side chain modification of glucosinolate-derived isothiocyanates in defense of Arabidopsis against Sclerotinia sclerotiorum.
    Stotz HU; Sawada Y; Shimada Y; Hirai MY; Sasaki E; Krischke M; Brown PD; Saito K; Kamiya Y
    Plant J; 2011 Jul; 67(1):81-93. PubMed ID: 21418358
    [TBL] [Abstract][Full Text] [Related]  

  • 17.
    Chen J; Ullah C; Giddings Vassão D; Reichelt M; Gershenzon J; Hammerbacher A
    Phytopathology; 2021 Mar; 111(3):559-569. PubMed ID: 32876531
    [No Abstract]   [Full Text] [Related]  

  • 18. Introduction of Large Sequence Inserts by CRISPR-Cas9 To Create Pathogenicity Mutants in the Multinucleate Filamentous Pathogen Sclerotinia sclerotiorum.
    Li J; Zhang Y; Zhang Y; Yu PL; Pan H; Rollins JA
    mBio; 2018 Jun; 9(3):. PubMed ID: 29946044
    [TBL] [Abstract][Full Text] [Related]  

  • 19. TMT-based quantitative proteomics analyses reveal novel defense mechanisms of Brassica napus against the devastating necrotrophic pathogen Sclerotinia sclerotiorum.
    Cao JY; Xu YP; Cai XZ
    J Proteomics; 2016 Jun; 143():265-277. PubMed ID: 26947552
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interactions of WRKY15 and WRKY33 transcription factors and their roles in the resistance of oilseed rape to Sclerotinia infection.
    Liu F; Li X; Wang M; Wen J; Yi B; Shen J; Ma C; Fu T; Tu J
    Plant Biotechnol J; 2018 Apr; 16(4):911-925. PubMed ID: 28929638
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.