BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 32170815)

  • 1. Molecular investigations into the unfoldase action of severing enzymes on microtubules.
    Varikoti RA; Macke AC; Speck V; Ross JL; Dima RI
    Cytoskeleton (Hoboken); 2020 May; 77(5-6):214-228. PubMed ID: 32170815
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanics of severing for large microtubule complexes revealed by coarse-grained simulations.
    Theisen KE; Desai NJ; Volski AM; Dima RI
    J Chem Phys; 2013 Sep; 139(12):121926. PubMed ID: 24089738
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computer simulation reveals the effect of severing enzymes on dynamic and stabilized microtubules.
    Sen A; Kunwar A
    Phys Biol; 2023 Apr; 20(3):. PubMed ID: 36893471
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The force required to remove tubulin from the microtubule lattice by pulling on its α-tubulin C-terminal tail.
    Kuo YW; Mahamdeh M; Tuna Y; Howard J
    Nat Commun; 2022 Jun; 13(1):3651. PubMed ID: 35752623
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microtubule severing by katanin p60 AAA+ ATPase requires the C-terminal acidic tails of both α- and β-tubulins and basic amino acid residues in the AAA+ ring pore.
    Johjima A; Noi K; Nishikori S; Ogi H; Esaki M; Ogura T
    J Biol Chem; 2015 May; 290(18):11762-70. PubMed ID: 25805498
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tubulin tails and their modifications regulate protein diffusion on microtubules.
    Bigman LS; Levy Y
    Proc Natl Acad Sci U S A; 2020 Apr; 117(16):8876-8883. PubMed ID: 32245812
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Katanin Severing and Binding Microtubules Are Inhibited by Tubulin Carboxy Tails.
    Bailey ME; Sackett DL; Ross JL
    Biophys J; 2015 Dec; 109(12):2546-2561. PubMed ID: 26682813
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In Vitro Reconstitution Assays of Microtubule Amplification and Lattice Repair by the Microtubule-Severing Enzymes Katanin and Spastin.
    Vemu A; Szczesna E; Roll-Mecak A
    Methods Mol Biol; 2020; 2101():27-38. PubMed ID: 31879896
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanics of the Microtubule Seam Interface Probed by Molecular Simulations and in Vitro Severing Experiments.
    Szatkowski L; Merz DR; Jiang N; Ejikeme I; Belonogov L; Ross JL; Dima RI
    J Phys Chem B; 2019 Jun; 123(23):4888-4900. PubMed ID: 31117616
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiscale modeling of the nanomechanics of microtubule protofilaments.
    Theisen KE; Zhmurov A; Newberry ME; Barsegov V; Dima RI
    J Phys Chem B; 2012 Jul; 116(29):8545-55. PubMed ID: 22509945
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling the effects of lattice defects on microtubule breaking and healing.
    Jiang N; Bailey ME; Burke J; Ross JL; Dima RI
    Cytoskeleton (Hoboken); 2017 Jan; 74(1):3-17. PubMed ID: 27935245
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cutting, Amplifying, and Aligning Microtubules with Severing Enzymes.
    Kuo YW; Howard J
    Trends Cell Biol; 2021 Jan; 31(1):50-61. PubMed ID: 33183955
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Invited review: Microtubule severing enzymes couple atpase activity with tubulin GTPase spring loading.
    Bailey ME; Jiang N; Dima RI; Ross JL
    Biopolymers; 2016 Aug; 105(8):547-56. PubMed ID: 27037673
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Tale of 12 Tails: Katanin Severing Activity Affected by Carboxy-Terminal Tail Sequences.
    Lindsay KA; Abdelhamid N; Kahawatte S; Dima RI; Sackett DL; Finegan TM; Ross JL
    Biomolecules; 2023 Mar; 13(4):. PubMed ID: 37189368
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modulating Microtubules: A Molecular Perspective on the Effects of Tail Modifications.
    Bigman LS; Levy Y
    J Mol Biol; 2021 Jun; 433(13):166988. PubMed ID: 33865866
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of Ca2+ on the microtubule-severing enzyme p60-katanin. Insight into the substrate-dependent activation mechanism.
    Iwaya N; Akiyama K; Goda N; Tenno T; Fujiwara Y; Hamada D; Ikura T; Shirakawa M; Hiroaki H
    FEBS J; 2012 Apr; 279(7):1339-52. PubMed ID: 22325007
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microtubule-severing activity of the AAA+ ATPase Katanin is essential for female meiotic spindle assembly.
    Joly N; Martino L; Gigant E; Dumont J; Pintard L
    Development; 2016 Oct; 143(19):3604-3614. PubMed ID: 27578779
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicted Effects of Severing Enzymes on the Length Distribution and Total Mass of Microtubules.
    Kuo YW; Trottier O; Howard J
    Biophys J; 2019 Dec; 117(11):2066-2078. PubMed ID: 31708162
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The microtubule-severing protein UNC-45A preferentially binds to curved microtubules and counteracts the microtubule-straightening effects of Taxol.
    Hoshino A; Clemente V; Shetty M; Castle B; Odde D; Bazzaro M
    J Biol Chem; 2023 Nov; 299(11):105355. PubMed ID: 37858676
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Katanin catalyzes microtubule depolymerization independently of tubulin C-terminal tails.
    Belonogov L; Bailey ME; Tyler MA; Kazemi A; Ross JL
    Cytoskeleton (Hoboken); 2019 Mar; 76(3):254-268. PubMed ID: 30980604
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.