These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 32170815)

  • 41. In vitro microtubule severing assays.
    Ziółkowska NE; Roll-Mecak A
    Methods Mol Biol; 2013; 1046():323-34. PubMed ID: 23868597
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Microtubule Simulations Provide Insight into the Molecular Mechanism Underlying Dynamic Instability.
    Tong D; Voth GA
    Biophys J; 2020 Jun; 118(12):2938-2951. PubMed ID: 32413312
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The Microtubule Severing Protein UNC-45A Counteracts the Microtubule Straightening Effects of Taxol.
    Hoshino A; Clemente V; Shetty M; Castle B; Odde D; Bazzaro M
    bioRxiv; 2023 Sep; ():. PubMed ID: 37745537
    [TBL] [Abstract][Full Text] [Related]  

  • 44. New data on the microtubule surface lattice.
    Chrétien D; Wade RH
    Biol Cell; 1991; 71(1-2):161-74. PubMed ID: 1912942
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Bacterial Tubulins A and B Exhibit Polarized Growth, Mixed-Polarity Bundling, and Destabilization by GTP Hydrolysis.
    Díaz-Celis C; Risca VI; Hurtado F; Polka JK; Hansen SD; Maturana D; Lagos R; Mullins RD; Monasterio O
    J Bacteriol; 2017 Oct; 199(19):. PubMed ID: 28716960
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Microtubule-severing enzymes: From cellular functions to molecular mechanism.
    McNally FJ; Roll-Mecak A
    J Cell Biol; 2018 Dec; 217(12):4057-4069. PubMed ID: 30373906
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Purification and biophysical analysis of microtubule-severing enzymes in vitro.
    Diaz-Valencia JD; Bailey M; Ross JL
    Methods Cell Biol; 2013; 115():191-213. PubMed ID: 23973074
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Cytoplasmic nucleation and atypical branching nucleation generate endoplasmic microtubules in Physcomitrella patens.
    Nakaoka Y; Kimura A; Tani T; Goshima G
    Plant Cell; 2015 Jan; 27(1):228-42. PubMed ID: 25616870
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Regulation of microtubule plus end dynamics by septin 9.
    Nakos K; Rosenberg M; Spiliotis ET
    Cytoskeleton (Hoboken); 2019 Jan; 76(1):83-91. PubMed ID: 30144301
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Microtubule-severing enzymes at the cutting edge.
    Sharp DJ; Ross JL
    J Cell Sci; 2012 Jun; 125(Pt 11):2561-9. PubMed ID: 22595526
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Microtubule nucleating and severing enzymes for modifying microtubule array organization and cell morphogenesis in response to environmental cues.
    Nakamura M
    New Phytol; 2015 Feb; 205(3):1022-7. PubMed ID: 25729799
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Vertebrate Fidgetin Restrains Axonal Growth by Severing Labile Domains of Microtubules.
    Leo L; Yu W; D'Rozario M; Waddell EA; Marenda DR; Baird MA; Davidson MW; Zhou B; Wu B; Baker L; Sharp DJ; Baas PW
    Cell Rep; 2015 Sep; 12(11):1723-30. PubMed ID: 26344772
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Conserved aromatic and basic amino acid residues in the pore region of Caenorhabditis elegans spastin play critical roles in microtubule severing.
    Matsushita-Ishiodori Y; Yamanaka K; Hashimoto H; Esaki M; Ogura T
    Genes Cells; 2009 Aug; 14(8):925-40. PubMed ID: 19619244
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Intrinsic bending of microtubule protofilaments.
    Grafmüller A; Voth GA
    Structure; 2011 Mar; 19(3):409-17. PubMed ID: 21397191
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Characterization of microtubule protofilament numbers. How does the surface lattice accommodate?
    Wade RH; Chrétien D; Job D
    J Mol Biol; 1990 Apr; 212(4):775-86. PubMed ID: 2329582
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Diverse balances of tubulin interactions and shape change drive and interrupt microtubule depolymerization.
    Bollinger JA; Stevens MJ
    Soft Matter; 2019 Oct; 15(40):8137-8146. PubMed ID: 31593193
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Lattice defects in microtubules: protofilament numbers vary within individual microtubules.
    Chrétien D; Metoz F; Verde F; Karsenti E; Wade RH
    J Cell Biol; 1992 Jun; 117(5):1031-40. PubMed ID: 1577866
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Human β-Tubulin Isotypes Can Regulate Microtubule Protofilament Number and Stability.
    Ti SC; Alushin GM; Kapoor TM
    Dev Cell; 2018 Oct; 47(2):175-190.e5. PubMed ID: 30245156
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Fueled by microtubules: does tubulin dimer/polymer partitioning regulate intracellular metabolism?
    Cassimeris L; Silva VC; Miller E; Ton Q; Molnar C; Fong J
    Cytoskeleton (Hoboken); 2012 Mar; 69(3):133-43. PubMed ID: 22328323
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Forces due to curving protofilaments in microtubules.
    Vichare S; Jain I; Inamdar MM; Padinhateeri R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Dec; 88(6):062708. PubMed ID: 24483487
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.