BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

383 related articles for article (PubMed ID: 32170883)

  • 1. Harnessing neoantigen specific CD4 T cells for cancer immunotherapy.
    Brightman SE; Naradikian MS; Miller AM; Schoenberger SP
    J Leukoc Biol; 2020 Apr; 107(4):625-633. PubMed ID: 32170883
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MHC class II restricted neoantigen: A promising target in tumor immunotherapy.
    Sun Z; Chen F; Meng F; Wei J; Liu B
    Cancer Lett; 2017 Apr; 392():17-25. PubMed ID: 28104443
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genetic approaches for the induction of a CD4+ T cell response in cancer immunotherapy.
    Bonehill A; Heirman C; Thielemans K
    J Gene Med; 2005 Jun; 7(6):686-95. PubMed ID: 15693037
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MHC class II-restricted tumor antigens recognized by CD4+ T cells: new strategies for cancer vaccine design.
    Zeng G
    J Immunother; 2001; 24(3):195-204. PubMed ID: 11394496
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Synthetic DNA, Multi-Neoantigen Vaccine Drives Predominately MHC Class I CD8
    Duperret EK; Perales-Puchalt A; Stoltz R; G H H; Mandloi N; Barlow J; Chaudhuri A; Sardesai NY; Weiner DB
    Cancer Immunol Res; 2019 Feb; 7(2):174-182. PubMed ID: 30679156
    [TBL] [Abstract][Full Text] [Related]  

  • 6. New generation of DNA-based immunotherapy induces a potent immune response and increases the survival in different tumor models.
    Lopes A; Bastiancich C; Bausart M; Ligot S; Lambricht L; Vanvarenberg K; Ucakar B; Gallez B; Préat V; Vandermeulen G
    J Immunother Cancer; 2021 Apr; 9(4):. PubMed ID: 33795383
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MHC class I TCR engineered anti-tumor CD4 T cells: implications for cancer immunotherapy.
    Chhabra A
    Endocr Metab Immune Disord Drug Targets; 2009 Dec; 9(4):344-52. PubMed ID: 19807670
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differentiation and Regulation of T
    Basu A; Ramamoorthi G; Albert G; Gallen C; Beyer A; Snyder C; Koski G; Disis ML; Czerniecki BJ; Kodumudi K
    Front Immunol; 2021; 12():669474. PubMed ID: 34012451
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vaccines targeting helper T cells for cancer immunotherapy.
    Melssen M; Slingluff CL
    Curr Opin Immunol; 2017 Aug; 47():85-92. PubMed ID: 28755541
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The present status and future prospects of peptide-based cancer vaccines.
    Hirayama M; Nishimura Y
    Int Immunol; 2016 Jul; 28(7):319-28. PubMed ID: 27235694
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exploiting Preexisting Immunity to Enhance Oncolytic Cancer Immunotherapy.
    Tähtinen S; Feola S; Capasso C; Laustio N; Groeneveldt C; Ylösmäki EO; Ylösmäki L; Martins B; Fusciello M; Medeot M; Tagliamonte M; Chiaro J; Hamdan F; Peltonen K; Ranki T; Buonaguro L; Cerullo V
    Cancer Res; 2020 Jun; 80(12):2575-2585. PubMed ID: 32107211
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-dose IL-2/CD25 fusion protein amplifies vaccine-induced CD4
    Hernandez R; LaPorte KM; Hsiung S; Santos Savio A; Malek TR
    J Immunother Cancer; 2021 Sep; 9(9):. PubMed ID: 34475132
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Personalized neoantigen vaccination with synthetic long peptides: recent advances and future perspectives.
    Chen X; Yang J; Wang L; Liu B
    Theranostics; 2020; 10(13):6011-6023. PubMed ID: 32483434
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced detection of neoantigen-reactive T cells targeting unique and shared oncogenes for personalized cancer immunotherapy.
    Yossef R; Tran E; Deniger DC; Gros A; Pasetto A; Parkhurst MR; Gartner JJ; Prickett TD; Cafri G; Robbins PF; Rosenberg SA
    JCI Insight; 2018 Oct; 3(19):. PubMed ID: 30282837
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Human leucocyte antigen class I-redirected anti-tumour CD4
    Tan MP; Dolton GM; Gerry AB; Brewer JE; Bennett AD; Pumphrey NJ; Jakobsen BK; Sewell AK
    Clin Exp Immunol; 2017 Jan; 187(1):124-137. PubMed ID: 27324616
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimization of Peptide Vaccines to Induce Robust Antitumor CD4 T-cell Responses.
    Kumai T; Lee S; Cho HI; Sultan H; Kobayashi H; Harabuchi Y; Celis E
    Cancer Immunol Res; 2017 Jan; 5(1):72-83. PubMed ID: 27941004
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Immunization with a peptide containing MHC class I and II epitopes derived from the tumor antigen SIM2 induces an effective CD4 and CD8 T-cell response.
    Kissick HT; Sanda MG; Dunn LK; Arredouani MS
    PLoS One; 2014; 9(4):e93231. PubMed ID: 24690990
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CD4+ T-cell activation for immunotherapy of malignancies using Ii-Key/MHC class II epitope hybrid vaccines.
    Xu M; Kallinteris NL; von Hofe E
    Vaccine; 2012 Apr; 30(18):2805-10. PubMed ID: 22386748
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tumour-specific CTL response requiring interactions of four different cell types and recognition of MHC class I and class II restricted tumour antigens.
    Schirrmacher V; Schild HJ; Gückel B; von Hoegen P
    Immunol Cell Biol; 1993 Aug; 71 ( Pt 4)():311-26. PubMed ID: 7901150
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CD27 Agonism Plus PD-1 Blockade Recapitulates CD4+ T-cell Help in Therapeutic Anticancer Vaccination.
    Ahrends T; Bąbała N; Xiao Y; Yagita H; van Eenennaam H; Borst J
    Cancer Res; 2016 May; 76(10):2921-31. PubMed ID: 27020860
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.