These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2715 related articles for article (PubMed ID: 32171151)
1. Catheter segmentation in X-ray fluoroscopy using synthetic data and transfer learning with light U-nets. Gherardini M; Mazomenos E; Menciassi A; Stoyanov D Comput Methods Programs Biomed; 2020 Aug; 192():105420. PubMed ID: 32171151 [TBL] [Abstract][Full Text] [Related]
2. Cryo-balloon catheter localization in X-Ray fluoroscopy using U-net. Vernikouskaya I; Bertsche D; Dahme T; Rasche V Int J Comput Assist Radiol Surg; 2021 Aug; 16(8):1255-1262. PubMed ID: 33877525 [TBL] [Abstract][Full Text] [Related]
3. An investigation of the effect of fat suppression and dimensionality on the accuracy of breast MRI segmentation using U-nets. Fashandi H; Kuling G; Lu Y; Wu H; Martel AL Med Phys; 2019 Mar; 46(3):1230-1244. PubMed ID: 30609062 [TBL] [Abstract][Full Text] [Related]
4. Convolutional neural network for automated mass segmentation in mammography. Abdelhafiz D; Bi J; Ammar R; Yang C; Nabavi S BMC Bioinformatics; 2020 Dec; 21(Suppl 1):192. PubMed ID: 33297952 [TBL] [Abstract][Full Text] [Related]
5. DENSE-INception U-net for medical image segmentation. Zhang Z; Wu C; Coleman S; Kerr D Comput Methods Programs Biomed; 2020 Aug; 192():105395. PubMed ID: 32163817 [TBL] [Abstract][Full Text] [Related]
6. ABCNet: A new efficient 3D dense-structure network for segmentation and analysis of body tissue composition on body-torso-wide CT images. Liu T; Pan J; Torigian DA; Xu P; Miao Q; Tong Y; Udupa JK Med Phys; 2020 Jul; 47(7):2986-2999. PubMed ID: 32170754 [TBL] [Abstract][Full Text] [Related]
7. Pyramid attention recurrent networks for real-time guidewire segmentation and tracking in intraoperative X-ray fluoroscopy. Zhou YJ; Xie XL; Zhou XH; Liu SQ; Bian GB; Hou ZG Comput Med Imaging Graph; 2020 Jul; 83():101734. PubMed ID: 32599518 [TBL] [Abstract][Full Text] [Related]
8. ARPM-net: A novel CNN-based adversarial method with Markov random field enhancement for prostate and organs at risk segmentation in pelvic CT images. Zhang Z; Zhao T; Gay H; Zhang W; Sun B Med Phys; 2021 Jan; 48(1):227-237. PubMed ID: 33151620 [TBL] [Abstract][Full Text] [Related]
9. Image generation by GAN and style transfer for agar plate image segmentation. Andreini P; Bonechi S; Bianchini M; Mecocci A; Scarselli F Comput Methods Programs Biomed; 2020 Feb; 184():105268. PubMed ID: 31891902 [TBL] [Abstract][Full Text] [Related]
10. A deep learning framework for automatic detection of arbitrarily shaped fiducial markers in intrafraction fluoroscopic images. Mylonas A; Keall PJ; Booth JT; Shieh CC; Eade T; Poulsen PR; Nguyen DT Med Phys; 2019 May; 46(5):2286-2297. PubMed ID: 30929254 [TBL] [Abstract][Full Text] [Related]
11. AnatomyNet: Deep learning for fast and fully automated whole-volume segmentation of head and neck anatomy. Zhu W; Huang Y; Zeng L; Chen X; Liu Y; Qian Z; Du N; Fan W; Xie X Med Phys; 2019 Feb; 46(2):576-589. PubMed ID: 30480818 [TBL] [Abstract][Full Text] [Related]
12. Automatic prostate segmentation using deep learning on clinically diverse 3D transrectal ultrasound images. Orlando N; Gillies DJ; Gyacskov I; Romagnoli C; D'Souza D; Fenster A Med Phys; 2020 Jun; 47(6):2413-2426. PubMed ID: 32166768 [TBL] [Abstract][Full Text] [Related]
13. Fully automatic estimation of pelvic sagittal inclination from anterior-posterior radiography image using deep learning framework. Jodeiri A; Zoroofi RA; Hiasa Y; Takao M; Sugano N; Sato Y; Otake Y Comput Methods Programs Biomed; 2020 Feb; 184():105282. PubMed ID: 31896056 [TBL] [Abstract][Full Text] [Related]
14. Unsupervised shape-and-texture-based generative adversarial tuning of pre-trained networks for carotid segmentation from 3D ultrasound images. Chen Z; Jiang M; Chiu B Med Phys; 2024 Oct; 51(10):7240-7256. PubMed ID: 39008794 [TBL] [Abstract][Full Text] [Related]
15. A new deep learning method for blood vessel segmentation in retinal images based on convolutional kernels and modified U-Net model. Gegundez-Arias ME; Marin-Santos D; Perez-Borrero I; Vasallo-Vazquez MJ Comput Methods Programs Biomed; 2021 Jun; 205():106081. PubMed ID: 33882418 [TBL] [Abstract][Full Text] [Related]
16. Fully automated multiorgan segmentation of female pelvic magnetic resonance images with coarse-to-fine convolutional neural network. Zabihollahy F; Viswanathan AN; Schmidt EJ; Morcos M; Lee J Med Phys; 2021 Nov; 48(11):7028-7042. PubMed ID: 34609756 [TBL] [Abstract][Full Text] [Related]
17. Reducing the U-Net size for practical scenarios: Virus recognition in electron microscopy images. Matuszewski DJ; Sintorn IM Comput Methods Programs Biomed; 2019 Sep; 178():31-39. PubMed ID: 31416558 [TBL] [Abstract][Full Text] [Related]
18. Deep-learning-based detection and segmentation of organs at risk in nasopharyngeal carcinoma computed tomographic images for radiotherapy planning. Liang S; Tang F; Huang X; Yang K; Zhong T; Hu R; Liu S; Yuan X; Zhang Y Eur Radiol; 2019 Apr; 29(4):1961-1967. PubMed ID: 30302589 [TBL] [Abstract][Full Text] [Related]
19. A Stacked Generalization U-shape network based on zoom strategy and its application in biomedical image segmentation. Shi T; Jiang H; Zheng B Comput Methods Programs Biomed; 2020 Dec; 197():105678. PubMed ID: 32791449 [TBL] [Abstract][Full Text] [Related]
20. Detection, segmentation, and 3D pose estimation of surgical tools using convolutional neural networks and algebraic geometry. Hasan MK; Calvet L; Rabbani N; Bartoli A Med Image Anal; 2021 May; 70():101994. PubMed ID: 33611053 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]