BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 32171171)

  • 1. Robustness of Catalytically Dead Cas9 Activators in Human Pluripotent and Mesenchymal Stem Cells.
    Petazzi P; Torres-Ruiz R; Fidanza A; Roca-Ho H; Gutierrez-Agüera F; Castaño J; Rodriguez-Perales S; Díaz de la Guardia R; López-Millán B; Bigas A; Forrester LM; Bueno C; Menéndez P
    Mol Ther Nucleic Acids; 2020 Jun; 20():196-204. PubMed ID: 32171171
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Specific Reactivation of Latent HIV-1 by dCas9-SunTag-VP64-mediated Guide RNA Targeting the HIV-1 Promoter.
    Ji H; Jiang Z; Lu P; Ma L; Li C; Pan H; Fu Z; Qu X; Wang P; Deng J; Yang X; Wang J; Zhu H
    Mol Ther; 2016 Mar; 24(3):508-21. PubMed ID: 26775808
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synergistic Upregulation of Target Genes by TET1 and VP64 in the dCas9-SunTag Platform.
    Morita S; Horii T; Kimura M; Hatada I
    Int J Mol Sci; 2020 Feb; 21(5):. PubMed ID: 32106616
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative analysis of dCas9-VP64 variants and multiplexed guide RNAs mediating CRISPR activation.
    Omachi K; Miner JH
    PLoS One; 2022; 17(6):e0270008. PubMed ID: 35763517
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Targeted CRISPR activation is functional in engineered human pluripotent stem cells but undergoes silencing after differentiation into cardiomyocytes and endothelium.
    Karbassi E; Padgett R; Bertero A; Reinecke H; Klaiman JM; Yang X; Hauschka SD; Murry CE
    Cell Mol Life Sci; 2024 Feb; 81(1):95. PubMed ID: 38372898
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A potent Cas9-derived gene activator for plant and mammalian cells.
    Li Z; Zhang D; Xiong X; Yan B; Xie W; Sheen J; Li JF
    Nat Plants; 2017 Dec; 3(12):930-936. PubMed ID: 29158545
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gene activation by a CRISPR-assisted
    Xu X; Gao J; Dai W; Wang D; Wu J; Wang J
    Elife; 2019 Apr; 8():. PubMed ID: 30973327
    [TBL] [Abstract][Full Text] [Related]  

  • 8. dCas9-mediated dysregulation of gene expression in human induced pluripotent stem cells during primitive streak differentiation.
    Haellman V; Pirkl M; Akmammedov A; Saxena P; Beerenwinkel N; Paro R; Teixeira AP; Fussenegger M
    Metab Eng; 2022 Sep; 73():70-81. PubMed ID: 35724832
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An inducible CRISPR-ON system for controllable gene activation in human pluripotent stem cells.
    Guo J; Ma D; Huang R; Ming J; Ye M; Kee K; Xie Z; Na J
    Protein Cell; 2017 May; 8(5):379-393. PubMed ID: 28116670
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Generation of Inducible CRISPRi and CRISPRa Human Stromal/Stem Cell Lines for Controlled Target Gene Transcription during Lineage Differentiation.
    Chen L; Shi K; Qiu W; Aagaard L; Kassem M
    Stem Cells Int; 2020; 2020():8857344. PubMed ID: 32922451
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel fungal gene regulation system based on inducible VPR-dCas9 and nucleosome map-guided sgRNA positioning.
    Schüller A; Wolansky L; Berger H; Studt L; Gacek-Matthews A; Sulyok M; Strauss J
    Appl Microbiol Biotechnol; 2020 Nov; 104(22):9801-9822. PubMed ID: 33006690
    [TBL] [Abstract][Full Text] [Related]  

  • 12. RNA-guided transcriptional regulation in planta via synthetic dCas9-based transcription factors.
    Piatek A; Ali Z; Baazim H; Li L; Abulfaraj A; Al-Shareef S; Aouida M; Mahfouz MM
    Plant Biotechnol J; 2015 May; 13(4):578-89. PubMed ID: 25400128
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional Comparison between VP64-dCas9-VP64 and dCas9-VP192 CRISPR Activators in Human Embryonic Kidney Cells.
    Javaid N; Pham TLH; Choi S
    Int J Mol Sci; 2021 Jan; 22(1):. PubMed ID: 33401508
    [TBL] [Abstract][Full Text] [Related]  

  • 14. RNA-Guided Activation of Pluripotency Genes in Human Fibroblasts.
    Xiong K; Zhou Y; Blichfeld KA; Hyttel P; Bolund L; Freude KK; Luo Y
    Cell Reprogram; 2017 Jun; 19(3):189-198. PubMed ID: 28557624
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Robust Transcriptional Activation in Plants Using Multiplexed CRISPR-Act2.0 and mTALE-Act Systems.
    Lowder LG; Zhou J; Zhang Y; Malzahn A; Zhong Z; Hsieh TF; Voytas DF; Zhang Y; Qi Y
    Mol Plant; 2018 Feb; 11(2):245-256. PubMed ID: 29197638
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CRISPR technologies for stem cell engineering and regenerative medicine.
    Hsu MN; Chang YH; Truong VA; Lai PL; Nguyen TKN; Hu YC
    Biotechnol Adv; 2019 Dec; 37(8):107447. PubMed ID: 31513841
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gene activation by dCas9-CBP and the SAM system differ in target preference.
    Sajwan S; Mannervik M
    Sci Rep; 2019 Dec; 9(1):18104. PubMed ID: 31792240
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly efficient activation of endogenous gene in grape using CRISPR/dCas9-based transcriptional activators.
    Ren C; Li H; Liu Y; Li S; Liang Z
    Hortic Res; 2022 Jan; 9():. PubMed ID: 35039855
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DNA epigenome editing using CRISPR-Cas SunTag-directed DNMT3A.
    Huang YH; Su J; Lei Y; Brunetti L; Gundry MC; Zhang X; Jeong M; Li W; Goodell MA
    Genome Biol; 2017 Sep; 18(1):176. PubMed ID: 28923089
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A CRISPRi-dCas9 System for Archaea and Its Use To Examine Gene Function during Nitrogen Fixation by Methanosarcina acetivorans.
    Dhamad AE; Lessner DJ
    Appl Environ Microbiol; 2020 Oct; 86(21):. PubMed ID: 32826220
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.