BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 32171171)

  • 21. Programmable activation of Bombyx gene expression using CRISPR/dCas9 fusion systems.
    Wang XG; Ma SY; Chang JS; Shi R; Wang RL; Zhao P; Xia QY
    Insect Sci; 2019 Dec; 26(6):983-990. PubMed ID: 30088341
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Bidirectional manipulation of gene expression in adipocytes using CRISPRa and siRNA.
    Lundh M; Pluciñska K; Isidor MS; Petersen PSS; Emanuelli B
    Mol Metab; 2017 Oct; 6(10):1313-1320. PubMed ID: 29031730
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Trinucleotide Repeat-Targeting dCas9 as a Therapeutic Strategy for Fuchs' Endothelial Corneal Dystrophy.
    Rong Z; Gong X; Hulleman JD; Corey DR; Mootha VV
    Transl Vis Sci Technol; 2020 Aug; 9(9):47. PubMed ID: 32934897
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Activating PTEN Tumor Suppressor Expression with the CRISPR/dCas9 System.
    Moses C; Nugent F; Waryah CB; Garcia-Bloj B; Harvey AR; Blancafort P
    Mol Ther Nucleic Acids; 2019 Mar; 14():287-300. PubMed ID: 30654190
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Waking up dormant tumor suppressor genes with zinc fingers, TALEs and the CRISPR/dCas9 system.
    Garcia-Bloj B; Moses C; Sgro A; Plani-Lam J; Arooj M; Duffy C; Thiruvengadam S; Sorolla A; Rashwan R; Mancera RL; Leisewitz A; Swift-Scanlan T; Corvalan AH; Blancafort P
    Oncotarget; 2016 Sep; 7(37):60535-60554. PubMed ID: 27528034
    [TBL] [Abstract][Full Text] [Related]  

  • 26. PhiReX 2.0: A Programmable and Red Light-Regulated CRISPR-dCas9 System for the Activation of Endogenous Genes in
    Machens F; Ran G; Ruehmkorff C; Meyer Auf der Heyde J; Mueller-Roeber B; Hochrein L
    ACS Synth Biol; 2023 Apr; 12(4):1046-1057. PubMed ID: 37014634
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Evaluating Synthetic Activation and Repression of Neuropsychiatric-Related Genes in hiPSC-Derived NPCs, Neurons, and Astrocytes.
    Ho SM; Hartley BJ; Flaherty E; Rajarajan P; Abdelaal R; Obiorah I; Barretto N; Muhammad H; Phatnani HP; Akbarian S; Brennand KJ
    Stem Cell Reports; 2017 Aug; 9(2):615-628. PubMed ID: 28757163
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Development and Validation of CRISPR Activator Systems for Overexpression of CB1 Receptors in Neurons.
    Di Maria V; Moindrot M; Ryde M; Bono A; Quintino L; Ledri M
    Front Mol Neurosci; 2020; 13():168. PubMed ID: 33013319
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A piggyBac-based toolkit for inducible genome editing in mammalian cells.
    Schertzer MD; Thulson E; Braceros KCA; Lee DM; Hinkle ER; Murphy RM; Kim SO; Vitucci ECM; Calabrese JM
    RNA; 2019 Aug; 25(8):1047-1058. PubMed ID: 31101683
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [The Efficiency of Gene Activation Using CRISPR/dCas9-Based Transactivation Systems Depends on the System Run Time].
    Artyuhov AS; Dorovskiy DA; Sorokina AV; Shakirova KM; Momotyuk ED; Dashinimaev EB
    Mol Biol (Mosk); 2022; 56(6):1014-1022. PubMed ID: 36475485
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Conditionally Stabilized dCas9 Activator for Controlling Gene Expression in Human Cell Reprogramming and Differentiation.
    Balboa D; Weltner J; Eurola S; Trokovic R; Wartiovaara K; Otonkoski T
    Stem Cell Reports; 2015 Sep; 5(3):448-59. PubMed ID: 26352799
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Site-specific manipulation of Arabidopsis loci using CRISPR-Cas9 SunTag systems.
    Papikian A; Liu W; Gallego-Bartolomé J; Jacobsen SE
    Nat Commun; 2019 Feb; 10(1):729. PubMed ID: 30760722
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Optimized strategy for in vivo Cas9-activation in
    Ewen-Campen B; Yang-Zhou D; Fernandes VR; González DP; Liu LP; Tao R; Ren X; Sun J; Hu Y; Zirin J; Mohr SE; Ni JQ; Perrimon N
    Proc Natl Acad Sci U S A; 2017 Aug; 114(35):9409-9414. PubMed ID: 28808002
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cellular reprogramming with multigene activation by the delivery of CRISPR/dCas9 ribonucleoproteins via magnetic peptide-imprinted chitosan nanoparticles.
    Lee MH; Lin CC; Thomas JL; Li JA; Lin HY
    Mater Today Bio; 2021 Jan; 9():100091. PubMed ID: 33521619
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Enabling Graded and Large-Scale Multiplex of Desired Genes Using a Dual-Mode dCas9 Activator in Saccharomyces cerevisiae.
    Deaner M; Mejia J; Alper HS
    ACS Synth Biol; 2017 Oct; 6(10):1931-1943. PubMed ID: 28700213
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A CRISPR Interference System for Efficient and Rapid Gene Knockdown in Caulobacter crescentus.
    Guzzo M; Castro LK; Reisch CR; Guo MS; Laub MT
    mBio; 2020 Jan; 11(1):. PubMed ID: 31937638
    [TBL] [Abstract][Full Text] [Related]  

  • 37. RNA-guided transcriptional activation via CRISPR/dCas9 mimics overexpression phenotypes in Arabidopsis.
    Park JJ; Dempewolf E; Zhang W; Wang ZY
    PLoS One; 2017; 12(6):e0179410. PubMed ID: 28622347
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Inactive Cas9 blocks vitreous-induced expression of Mdm2 and proliferation and survival of retinal pigment epithelial cells.
    Chen N; Hu Z; Yang Y; Han H; Lei H
    Exp Eye Res; 2019 Sep; 186():107716. PubMed ID: 31278903
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Positional effects on efficiency of CRISPR/Cas9-based transcriptional activation in rice plants.
    Gong X; Zhang T; Xing J; Wang R; Zhao Y
    aBIOTECH; 2020 Jan; 1(1):1-5. PubMed ID: 36305003
    [TBL] [Abstract][Full Text] [Related]  

  • 40. CRISPR/Cas9-based epigenome editing: An overview of dCas9-based tools with special emphasis on off-target activity.
    Tadić V; Josipović G; Zoldoš V; Vojta A
    Methods; 2019 Jul; 164-165():109-119. PubMed ID: 31071448
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.