BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 32171216)

  • 1. Intermolecular dissociation energies of 1-naphthol complexes with large dispersion-energy donors: Decalins and adamantane.
    Knochenmuss R; Sinha RK; Balmer FA; Ottiger P; Leutwyler S
    J Chem Phys; 2020 Mar; 152(10):104304. PubMed ID: 32171216
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intermolecular dissociation energies of 1-naphthol·n-alkane complexes.
    Knochenmuss R; Maity S; Balmer F; Müller C; Leutwyler S
    J Chem Phys; 2018 Jul; 149(3):034306. PubMed ID: 30037256
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intermolecular dissociation energies of dispersively bound complexes of aromatics with noble gases and nitrogen.
    Knochenmuss R; Sinha RK; Leutwyler S
    J Chem Phys; 2018 Apr; 148(13):134302. PubMed ID: 29626863
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intermolecular dissociation energies of dispersively bound 1-naphthol⋅cycloalkane complexes.
    Maity S; Ottiger P; Balmer FA; Knochenmuss R; Leutwyler S
    J Chem Phys; 2016 Dec; 145(24):244314. PubMed ID: 28049305
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Face, Notch, or Edge? Intermolecular dissociation energies of 1-naphthol complexes with linear molecules.
    Knochenmuss R; Sinha RK; Leutwyler S
    J Chem Phys; 2019 Jun; 150(23):234303. PubMed ID: 31228890
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intermolecular dissociation energies of hydrogen-bonded 1-naphthol complexes.
    Knochenmuss R; Sinha RK; Poblotzki A; Den T; Leutwyler S
    J Chem Phys; 2018 Nov; 149(20):204311. PubMed ID: 30501267
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Accurate dissociation energies of two isomers of the 1-naphthol⋅cyclopropane complex.
    Maity S; Knochenmuss R; Holzer C; Féraud G; Frey J; Klopper W; Leutwyler S
    J Chem Phys; 2016 Oct; 145(16):164304. PubMed ID: 27802641
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental and Calculated Spectra of π-Stacked Mild Charge-Transfer Complexes: Jet-Cooled Perylene·(Tetrachloroethene)n, n = 1,2.
    Balmer FA; Ottiger P; Leutwyler S
    J Phys Chem A; 2015 Oct; 119(42):10462-74. PubMed ID: 26424034
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Benchmark Experimental Gas-Phase Intermolecular Dissociation Energies by the SEP-R2PI Method.
    Knochenmuss R; Sinha RK; Leutwyler S
    Annu Rev Phys Chem; 2020 Apr; 71():189-211. PubMed ID: 32070214
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Measuring Intermolecular Binding Energies by Laser Spectroscopy.
    Knochenmuss R; Maity S; Féraud G; Leutwyler S
    Chimia (Aarau); 2017 Feb; 71(1-2):7-12. PubMed ID: 28259189
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure and intermolecular vibrations of perylene·trans-1,2-dichloroethene, a weak charge-transfer complex.
    Balmer FA; Ottiger P; Pfaffen C; Leutwyler S
    J Phys Chem A; 2013 Oct; 117(41):10702-13. PubMed ID: 24063531
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ionization spectroscopies and theoretical calculations of cis and trans 3-fluoro-N-methylaniline-Ar
    Zhang L; Li D; Cheng M; Du Y; Zhu Q
    Spectrochim Acta A Mol Biomol Spectrosc; 2017 Aug; 183():177-186. PubMed ID: 28448955
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Probing cooperativity in C-H⋯N and C-H⋯π interactions: Dissociation energies of aniline⋯(CH
    Makuvaza JT; Loman JL; Kokkin DL; Reid SA
    J Chem Phys; 2020 Jul; 153(4):044303. PubMed ID: 32752709
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Isomer-specific spectroscopy and conformational isomerization energetics of o-, m-, and p-ethynylstyrenes.
    Selby TM; Clarkson JR; Mitchell D; Fitzpatrick JA; Lee HD; Pratt DW; Zwier TS
    J Phys Chem A; 2005 May; 109(20):4484-96. PubMed ID: 16833784
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A DFT study of the ionization and electron attachment of 2-azido pyridine.
    Elshakre M
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Mar; 138():146-57. PubMed ID: 25485868
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bond dissociation energies of TiSi, ZrSi, HfSi, VSi, NbSi, and TaSi.
    Sevy A; Sorensen JJ; Persinger TD; Franchina JA; Johnson EL; Morse MD
    J Chem Phys; 2017 Aug; 147(8):084301. PubMed ID: 28863527
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Far-Ultraviolet Spectroscopy and Quantum Chemical Calculation Studies of the Conformational Dependence on the Electronic Structure and Transitions of Cyclohexane, Methyl and Dimethyl Cyclohexane, and Decalin; Effects of Axial Substitutions on the Electronic Transitions.
    Morisawa Y; Higaki Y; Ozaki Y
    J Phys Chem A; 2021 Sep; 125(37):8205-8214. PubMed ID: 34505772
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vibronic spectra of jet-cooled 2-aminopurine·H2O clusters studied by UV resonant two-photon ionization spectroscopy and quantum chemical calculations.
    Sinha RK; Lobsiger S; Trachsel M; Leutwyler S
    J Phys Chem A; 2011 Jun; 115(23):6208-17. PubMed ID: 21322622
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bond dissociation energies of TiC, ZrC, HfC, ThC, NbC, and TaC.
    Sevy A; Matthew DJ; Morse MD
    J Chem Phys; 2018 Jul; 149(4):044306. PubMed ID: 30068153
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bond dissociation energies of diatomic transition metal selenides: TiSe, ZrSe, HfSe, VSe, NbSe, and TaSe.
    Sorensen JJ; Persinger TD; Sevy A; Franchina JA; Johnson EL; Morse MD
    J Chem Phys; 2016 Dec; 145(21):214308. PubMed ID: 28799363
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.