These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 32171223)

  • 1. Discontinuous wrapping transition of spherical nanoparticles by tensionless lipid membranes.
    Spangler EJ; Laradji M
    J Chem Phys; 2020 Mar; 152(10):104902. PubMed ID: 32171223
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Partial wrapping and spontaneous endocytosis of spherical nanoparticles by tensionless lipid membranes.
    Spangler EJ; Upreti S; Laradji M
    J Chem Phys; 2016 Jan; 144(4):044901. PubMed ID: 26827231
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adhesion and Aggregation of Spherical Nanoparticles on Lipid Membranes.
    Laradji M; Kumar PBS; Spangler EJ
    Chem Phys Lipids; 2020 Nov; 233():104989. PubMed ID: 33120231
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling nanoparticle wrapping or translocation in bilayer membranes.
    Curtis EM; Bahrami AH; Weikl TR; Hall CK
    Nanoscale; 2015 Sep; 7(34):14505-14. PubMed ID: 26260123
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dry Martini, a coarse-grained force field for lipid membrane simulations with implicit solvent.
    Arnarez C; Uusitalo JJ; Masman MF; Ingólfsson HI; de Jong DH; Melo MN; Periole X; de Vries AH; Marrink SJ
    J Chem Theory Comput; 2015 Jan; 11(1):260-75. PubMed ID: 26574224
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermodynamics of charged nanoparticle adsorption on charge-neutral membranes: a simulation study.
    Li Y; Gu N
    J Phys Chem B; 2010 Mar; 114(8):2749-54. PubMed ID: 20146444
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coarse-grained molecular simulations of membrane adhesion domains.
    Dharan N; Farago O
    J Chem Phys; 2014 Jul; 141(2):024903. PubMed ID: 25028042
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stability of membrane-induced self-assemblies of spherical nanoparticles.
    Spangler EJ; Kumar PBS; Laradji M
    Soft Matter; 2018 Jun; 14(24):5019-5030. PubMed ID: 29855646
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lipid membranes as solvents for carbon nanoparticles.
    Barnoud J; Rossi G; Monticelli L
    Phys Rev Lett; 2014 Feb; 112(6):068102. PubMed ID: 24580709
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Membrane-mediated aggregation of anisotropically curved nanoparticles.
    Olinger AD; Spangler EJ; Kumar PB; Laradji M
    Faraday Discuss; 2016; 186():265-75. PubMed ID: 26778353
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modes of adhesion of spherocylindrical nanoparticles to tensionless lipid bilayers.
    Sharma A; Zhu Y; Spangler EJ; Laradji M
    J Chem Phys; 2022 Jun; 156(23):234901. PubMed ID: 35732528
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phase behavior of supported lipid bilayers: A systematic study by coarse-grained molecular dynamics simulations.
    Poursoroush A; Sperotto MM; Laradji M
    J Chem Phys; 2017 Apr; 146(15):154902. PubMed ID: 28433014
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of temperature and PEG grafting density on the translocation of PEGylated nanoparticles across asymmetric lipid membrane.
    Zhang Z; Lin X; Gu N
    Colloids Surf B Biointerfaces; 2017 Dec; 160():92-100. PubMed ID: 28918189
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wrapping of nanoparticles by membranes.
    Bahrami AH; Raatz M; Agudo-Canalejo J; Michel R; Curtis EM; Hall CK; Gradzielski M; Lipowsky R; Weikl TR
    Adv Colloid Interface Sci; 2014 Jun; 208():214-24. PubMed ID: 24703299
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Osmotic Concentration-Controlled Particle Uptake and Wrapping-Induced Lysis of Cells and Vesicles.
    Yu Q; Dasgupta S; Auth T; Gompper G
    Nano Lett; 2020 Mar; 20(3):1662-1668. PubMed ID: 32046489
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Amphiphilic copolymers change the nature of the ordered-to-disordered phase transition of lipid membranes from discontinuous to continuous.
    Zaki AM; Carbone P
    Phys Chem Chem Phys; 2019 Jun; 21(25):13746-13757. PubMed ID: 31209450
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DPPC-cholesterol phase diagram using coarse-grained Molecular Dynamics simulations.
    Wang Y; Gkeka P; Fuchs JE; Liedl KR; Cournia Z
    Biochim Biophys Acta; 2016 Nov; 1858(11):2846-2857. PubMed ID: 27526680
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cooperative wrapping of nanoparticles of various sizes and shapes by lipid membranes.
    Xiong K; Zhao J; Yang D; Cheng Q; Wang J; Ji H
    Soft Matter; 2017 Jul; 13(26):4644-4652. PubMed ID: 28650048
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fluid membranes can drive linear aggregation of adsorbed spherical nanoparticles.
    Sarić A; Cacciuto A
    Phys Rev Lett; 2012 Mar; 108(11):118101. PubMed ID: 22540513
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling the lipid component of membranes.
    Scott HL
    Curr Opin Struct Biol; 2002 Aug; 12(4):495-502. PubMed ID: 12163073
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.