These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 32171223)

  • 21. Thermal-controlled cellular uptake of "hot" nanoparticles.
    Chen H; Dong X; Ou L; Ma C; Yuan B; Yang K
    Nanoscale; 2023 Aug; 15(30):12718-12727. PubMed ID: 37470374
    [TBL] [Abstract][Full Text] [Related]  

  • 22. In silico screening of drug-membrane thermodynamics reveals linear relations between bulk partitioning and the potential of mean force.
    Menichetti R; Kanekal KH; Kremer K; Bereau T
    J Chem Phys; 2017 Sep; 147(12):125101. PubMed ID: 28964031
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Determining the pivotal plane of fluid lipid membranes in simulations.
    Wang X; Deserno M
    J Chem Phys; 2015 Oct; 143(16):164109. PubMed ID: 26520500
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nanoparticles of Various Degrees of Hydrophobicity Interacting with Lipid Membranes.
    Su CF; Merlitz H; Rabbel H; Sommer JU
    J Phys Chem Lett; 2017 Sep; 8(17):4069-4076. PubMed ID: 28797162
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Rupturing the hemi-fission intermediate in membrane fission under tension: Reaction coordinates, kinetic pathways, and free-energy barriers.
    Zhang G; Müller M
    J Chem Phys; 2017 Aug; 147(6):064906. PubMed ID: 28810752
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Membrane monolayer protrusion mediates a new nanoparticle wrapping pathway.
    Yue T; Zhang X; Huang F
    Soft Matter; 2014 Mar; 10(12):2024-34. PubMed ID: 24652443
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Molecular Dynamics Simulation of Interaction between Functionalized Nanoparticles with Lipid Membranes: Analysis of Coarse-Grained Models.
    Das M; Dahal U; Mesele O; Liang D; Cui Q
    J Phys Chem B; 2019 Dec; 123(49):10547-10561. PubMed ID: 31675790
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Distribution of Fullerene Nanoparticles between Water and Solid Supported Lipid Membranes: Thermodynamics and Effects of Membrane Composition on Distribution.
    Ha Y; Katz LE; Liljestrand HM
    Environ Sci Technol; 2015 Dec; 49(24):14546-53. PubMed ID: 26569041
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Curvature-undulation coupling as a basis for curvature sensing and generation in bilayer membranes.
    Bradley RP; Radhakrishnan R
    Proc Natl Acad Sci U S A; 2016 Aug; 113(35):E5117-24. PubMed ID: 27531962
    [TBL] [Abstract][Full Text] [Related]  

  • 30. pSPICA: A Coarse-Grained Force Field for Lipid Membranes Based on a Polar Water Model.
    Miyazaki Y; Okazaki S; Shinoda W
    J Chem Theory Comput; 2020 Jan; 16(1):782-793. PubMed ID: 31751511
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cellular uptake of elastic nanoparticles.
    Yi X; Shi X; Gao H
    Phys Rev Lett; 2011 Aug; 107(9):098101. PubMed ID: 21929271
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Membrane Wrapping Efficiency of Elastic Nanoparticles during Endocytosis: Size and Shape Matter.
    Shen Z; Ye H; Yi X; Li Y
    ACS Nano; 2019 Jan; 13(1):215-228. PubMed ID: 30557506
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Undulation instability of lipid membranes under an electric field.
    Sens P; Isambert H
    Phys Rev Lett; 2002 Mar; 88(12):128102. PubMed ID: 11909504
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nanoparticle translocation through a lipid bilayer tuned by surface chemistry.
    da Rocha EL; Caramori GF; Rambo CR
    Phys Chem Chem Phys; 2013 Feb; 15(7):2282-90. PubMed ID: 23223270
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nanoparticles binding to lipid membranes: from vesicle-based gels to vesicle tubulation and destruction.
    Zuraw-Weston S; Wood DA; Torres IK; Lee Y; Wang LS; Jiang Z; Lázaro GR; Wang S; Rodal AA; Hagan MF; Rotello VM; Dinsmore AD
    Nanoscale; 2019 Oct; 11(39):18464-18474. PubMed ID: 31577313
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Computer simulation study of nanoparticle interaction with a lipid membrane under mechanical stress.
    Lai K; Wang B; Zhang Y; Zheng Y
    Phys Chem Chem Phys; 2013 Jan; 15(1):270-8. PubMed ID: 23165312
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Computer simulations of the phase separation in model membranes.
    Baoukina S; Mendez-Villuendas E; Bennett WF; Tieleman DP
    Faraday Discuss; 2013; 161():63-75; discussion 113-50. PubMed ID: 23805738
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of fullerene on lipid bilayers displaying different liquid ordering: a coarse-grained molecular dynamics study.
    Sastre J; Mannelli I; Reigada R
    Biochim Biophys Acta Gen Subj; 2017 Nov; 1861(11 Pt A):2872-2882. PubMed ID: 28780125
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Coupling between lipid shape and membrane curvature.
    Cooke IR; Deserno M
    Biophys J; 2006 Jul; 91(2):487-95. PubMed ID: 16807230
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Computer simulations of phase separation in lipid bilayers and monolayers.
    Baoukina S; Tieleman DP
    Methods Mol Biol; 2015; 1232():307-22. PubMed ID: 25331143
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.