These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 32171234)

  • 1. QTL mapping and transcriptome analysis identify candidate genes regulating pericarp thickness in sweet corn.
    Wu X; Wang B; Xie F; Zhang L; Gong J; Zhu W; Li X; Feng F; Huang J
    BMC Plant Biol; 2020 Mar; 20(1):117. PubMed ID: 32171234
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integrative analysis of transcriptome and miRNAome reveals molecular mechanisms regulating pericarp thickness in sweet corn during kernel development.
    Xiong C; Pei H; Zhang Y; Ren W; Ma Z; Tang Y; Huang J
    Front Plant Sci; 2022; 13():945379. PubMed ID: 35958194
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genetic analysis and QTL mapping for pericarp thickness in maize (Zea mays L.).
    Gong G; Jia H; Tang Y; Pei H; Zhai L; Huang J
    BMC Plant Biol; 2024 Apr; 24(1):338. PubMed ID: 38664642
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Construction of High-Density Genetic Map and Identification of QTLs Associated with Seed Vigor after Exposure to Artificial Aging Conditions in Sweet Corn Using SLAF-seq.
    Wu X; Feng F; Zhu Y; Xie F; Yang J; Gong J; Liu Y; Zhu W; Gao T; Chen D; Li X; Huang J
    Genes (Basel); 2019 Dec; 11(1):. PubMed ID: 31905667
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular mapping of quantitative trait loci for grain moisture at harvest and field grain drying rate in maize (Zea mays L.).
    Zhang J; Zhang F; Tang B; Ding Y; Xia L; Qi J; Mu X; Gu L; Lu D; Chen Y
    Physiol Plant; 2020 May; 169(1):64-72. PubMed ID: 31725912
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A high-density genetic map developed by specific-locus amplified fragment (SLAF) sequencing and identification of a locus controlling anthocyanin pigmentation in stalk of Zicaitai (Brassica rapa L. ssp. chinensis var. purpurea).
    Li GH; Chen HC; Liu JL; Luo WL; Xie DS; Luo SB; Wu TQ; Akram W; Zhong YJ
    BMC Genomics; 2019 May; 20(1):343. PubMed ID: 31064320
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Construction of the first high-density genetic linkage map and identification of seed yield-related QTLs and candidate genes in Elymus sibiricus, an important forage grass in Qinghai-Tibet Plateau.
    Zhang Z; Xie W; Zhang J; Wang N; Zhao Y; Wang Y; Bai S
    BMC Genomics; 2019 Nov; 20(1):861. PubMed ID: 31726988
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Construction of genetic linkage map and identification of QTLs related to agronomic traits in DH population of maize (Zea mays L.) using SSR markers.
    Choi JK; Sa KJ; Park DH; Lim SE; Ryu SH; Park JY; Park KJ; Rhee HI; Lee M; Lee JK
    Genes Genomics; 2019 Jun; 41(6):667-678. PubMed ID: 30953340
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Construction of a high-density genetic map and mapping of QTLs for soybean (Glycine max) agronomic and seed quality traits by specific length amplified fragment sequencing.
    Zhang Y; Li W; Lin Y; Zhang L; Wang C; Xu R
    BMC Genomics; 2018 Aug; 19(1):641. PubMed ID: 30157757
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genetic dissection of maize plant architecture with an ultra-high density bin map based on recombinant inbred lines.
    Zhou Z; Zhang C; Zhou Y; Hao Z; Wang Z; Zeng X; Di H; Li M; Zhang D; Yong H; Zhang S; Weng J; Li X
    BMC Genomics; 2016 Mar; 17():178. PubMed ID: 26940065
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-density linkage map construction and QTL analyses for fiber quality, yield and morphological traits using CottonSNP63K array in upland cotton (Gossypium hirsutum L.).
    Zhang K; Kuraparthy V; Fang H; Zhu L; Sood S; Jones DC
    BMC Genomics; 2019 Nov; 20(1):889. PubMed ID: 31771502
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unraveling the genetic architecture of grain size in einkorn wheat through linkage and homology mapping and transcriptomic profiling.
    Yu K; Liu D; Chen Y; Wang D; Yang W; Yang W; Yin L; Zhang C; Zhao S; Sun J; Liu C; Zhang A
    J Exp Bot; 2019 Sep; 70(18):4671-4688. PubMed ID: 31226200
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genetic dissection of stalk lodging-related traits using an IBM Syn10 DH population in maize across three environments (Zea mays L.).
    Zhang Y; Liang T; Chen M; Zhang Y; Wang T; Lin H; Rong T; Zou C; Liu P; Lee M; Pan G; Shen Y; Lübberstedt T
    Mol Genet Genomics; 2019 Oct; 294(5):1277-1288. PubMed ID: 31139941
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Validation of QTL mapping and transcriptome profiling for identification of candidate genes associated with nitrogen stress tolerance in sorghum.
    Gelli M; Konda AR; Liu K; Zhang C; Clemente TE; Holding DR; Dweikat IM
    BMC Plant Biol; 2017 Jul; 17(1):123. PubMed ID: 28697783
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-density genetic map construction and QTL mapping of first flower node in pepper (Capsicum annuum L.).
    Zhang XF; Wang GY; Dong TT; Chen B; Du HS; Li CB; Zhang FL; Zhang HY; Xu Y; Wang Q; Geng SS
    BMC Plant Biol; 2019 Apr; 19(1):167. PubMed ID: 31035914
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fine-mapping of qGW4.05, a major QTL for kernel weight and size in maize.
    Chen L; Li YX; Li C; Wu X; Qin W; Li X; Jiao F; Zhang X; Zhang D; Shi Y; Song Y; Li Y; Wang T
    BMC Plant Biol; 2016 Apr; 16():81. PubMed ID: 27068015
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multi-environment QTL analysis of grain morphology traits and fine mapping of a kernel-width QTL in Zheng58 × SK maize population.
    Raihan MS; Liu J; Huang J; Guo H; Pan Q; Yan J
    Theor Appl Genet; 2016 Aug; 129(8):1465-77. PubMed ID: 27154588
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-density genetic map construction and QTLs identification for plant height in white jute (Corchorus capsularis L.) using specific locus amplified fragment (SLAF) sequencing.
    Tao A; Huang L; Wu G; Afshar RK; Qi J; Xu J; Fang P; Lin L; Zhang L; Lin P
    BMC Genomics; 2017 May; 18(1):355. PubMed ID: 28482802
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A major QTL and candidate genes for capsaicinoid biosynthesis in the pericarp of Capsicum chinense revealed using QTL-seq and RNA-seq.
    Park M; Lee JH; Han K; Jang S; Han J; Lim JH; Jung JW; Kang BC
    Theor Appl Genet; 2019 Feb; 132(2):515-529. PubMed ID: 30426173
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genetic dissection of yield-related traits and mid-parent heterosis for those traits in maize (Zea mays L.).
    Yi Q; Liu Y; Hou X; Zhang X; Li H; Zhang J; Liu H; Hu Y; Yu G; Li Y; Wang Y; Huang Y
    BMC Plant Biol; 2019 Sep; 19(1):392. PubMed ID: 31500559
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.