BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

813 related articles for article (PubMed ID: 32171238)

  • 1. Machine learning prediction of oncology drug targets based on protein and network properties.
    Dezső Z; Ceccarelli M
    BMC Bioinformatics; 2020 Mar; 21(1):104. PubMed ID: 32171238
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integrating Biological Networks for Drug Target Prediction and Prioritization.
    Ji X; Freudenberg JM; Agarwal P
    Methods Mol Biol; 2019; 1903():203-218. PubMed ID: 30547444
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Drug-target interaction prediction with tree-ensemble learning and output space reconstruction.
    Pliakos K; Vens C
    BMC Bioinformatics; 2020 Feb; 21(1):49. PubMed ID: 32033537
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In silico re-identification of properties of drug target proteins.
    Kim B; Jo J; Han J; Park C; Lee H
    BMC Bioinformatics; 2017 May; 18(Suppl 7):248. PubMed ID: 28617227
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Error Tolerance of Machine Learning Algorithms across Contemporary Biological Targets.
    Kaiser TM; Burger PB
    Molecules; 2019 Jun; 24(11):. PubMed ID: 31167452
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Drug Target Identification with Machine Learning: How to Choose Negative Examples.
    Najm M; Azencott CA; Playe B; Stoven V
    Int J Mol Sci; 2021 May; 22(10):. PubMed ID: 34066072
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting drug-target interaction network using deep learning model.
    You J; McLeod RD; Hu P
    Comput Biol Chem; 2019 Jun; 80():90-101. PubMed ID: 30939415
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Review of Computational Methods for Predicting Drug Targets.
    Huang G; Yan F; Tan D
    Curr Protein Pept Sci; 2018; 19(6):562-572. PubMed ID: 27842478
    [TBL] [Abstract][Full Text] [Related]  

  • 9. GuiltyTargets: Prioritization of Novel Therapeutic Targets With Network Representation Learning.
    Muslu O; Hoyt CT; Lacerda M; Hofmann-Apitius M; Frohlich H
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(1):491-500. PubMed ID: 32750869
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Empowering the discovery of novel target-disease associations via machine learning approaches in the open targets platform.
    Han Y; Klinger K; Rajpal DK; Zhu C; Teeple E
    BMC Bioinformatics; 2022 Jun; 23(1):232. PubMed ID: 35710324
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adaptive one-class Gaussian processes allow accurate prioritization of oncology drug targets.
    de Falco A; Dezso Z; Ceccarelli F; Cerulo L; Ciaramella A; Ceccarelli M
    Bioinformatics; 2021 Jun; 37(10):1420-1427. PubMed ID: 33165571
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Machine Learning Approach for Drug-target Interaction Prediction using Wrapper Feature Selection and Class Balancing.
    Redkar S; Mondal S; Joseph A; Hareesha KS
    Mol Inform; 2020 May; 39(5):e1900062. PubMed ID: 32003548
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ML-DTD: Machine Learning-Based Drug Target Discovery for the Potential Treatment of COVID-19.
    Saha S; Chatterjee P; Halder AK; Nasipuri M; Basu S; Plewczynski D
    Vaccines (Basel); 2022 Sep; 10(10):. PubMed ID: 36298508
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational Prediction of Drug-Target Interactions via Ensemble Learning.
    Ezzat A; Wu M; Li X; Kwoh CK
    Methods Mol Biol; 2019; 1903():239-254. PubMed ID: 30547446
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computational probing protein-protein interactions targeting small molecules.
    Wang YC; Chen SL; Deng NY; Wang Y
    Bioinformatics; 2016 Jan; 32(2):226-34. PubMed ID: 26415726
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of infectious disease-associated host genes using machine learning techniques.
    Barman RK; Mukhopadhyay A; Maulik U; Das S
    BMC Bioinformatics; 2019 Dec; 20(1):736. PubMed ID: 31881961
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent Advances in the Machine Learning-Based Drug-Target Interaction Prediction.
    Zhang W; Lin W; Zhang D; Wang S; Shi J; Niu Y
    Curr Drug Metab; 2019; 20(3):194-202. PubMed ID: 30129407
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Drug repositioning of herbal compounds via a machine-learning approach.
    Kim E; Choi AS; Nam H
    BMC Bioinformatics; 2019 May; 20(Suppl 10):247. PubMed ID: 31138103
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Machine learning in computational docking.
    Khamis MA; Gomaa W; Ahmed WF
    Artif Intell Med; 2015 Mar; 63(3):135-52. PubMed ID: 25724101
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genome-wide investigation of gene-cancer associations for the prediction of novel therapeutic targets in oncology.
    Bazaga A; Leggate D; Weisser H
    Sci Rep; 2020 Jul; 10(1):10787. PubMed ID: 32612205
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 41.