BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 32171446)

  • 1. Retraction notice to "Uncalibrated dynamic visual servoing via multivariate adaptive regression splines and improved incremental extreme learning machine" [ISA Transactions 92 (2019) 298-314].
    Zhou Z; Zhang R; Zhu Z
    ISA Trans; 2020 Mar; 98():505. PubMed ID: 32171446
    [No Abstract]   [Full Text] [Related]  

  • 2. RETRACTED: Uncalibrated dynamic visual servoing via multivariate adaptive regression splines and improved incremental extreme learning machine.
    Zhou Z; Zhang R; Zhu Z
    ISA Trans; 2019 Sep; 92():298-314. PubMed ID: 30851958
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Robust uncalibrated visual servoing control based on disturbance observer.
    Ma Z; Su J
    ISA Trans; 2015 Nov; 59():193-204. PubMed ID: 26321013
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Global finite-time adaptive control for uncalibrated robot manipulator based on visual servoing.
    Li T; Zhao H
    ISA Trans; 2017 May; 68():402-411. PubMed ID: 28291528
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Uncalibrated Visual Servoing for Underwater Vehicle Manipulator Systems with an Eye in Hand Configuration Camera.
    Li J; Huang H; Xu Y; Wu H; Wan L
    Sensors (Basel); 2019 Dec; 19(24):. PubMed ID: 31835872
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adaptive tracking control of a wheeled mobile robot via an uncalibrated camera system.
    Dixon WE; Dawson DM; Zergeroglu E; Behal A
    IEEE Trans Syst Man Cybern B Cybern; 2001; 31(3):341-52. PubMed ID: 18244797
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatial pattern analysis and prediction of forest fire using new machine learning approach of Multivariate Adaptive Regression Splines and Differential Flower Pollination optimization: A case study at Lao Cai province (Viet Nam).
    Tien Bui D; Hoang ND; Samui P
    J Environ Manage; 2019 May; 237():476-487. PubMed ID: 30825780
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Research on air pollutant concentration prediction method based on self-adaptive neuro-fuzzy weighted extreme learning machine.
    Li Y; Jiang P; She Q; Lin G
    Environ Pollut; 2018 Oct; 241():1115-1127. PubMed ID: 30029320
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Very short-term reactive forecasting of the solar ultraviolet index using an extreme learning machine integrated with the solar zenith angle.
    Deo RC; Downs N; Parisi AV; Adamowski JF; Quilty JM
    Environ Res; 2017 May; 155():141-166. PubMed ID: 28222363
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improving the Spatial Prediction of Soil Organic Carbon Stocks in a Complex Tropical Mountain Landscape by Methodological Specifications in Machine Learning Approaches.
    Ließ M; Schmidt J; Glaser B
    PLoS One; 2016; 11(4):e0153673. PubMed ID: 27128736
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Merging weighted SVMs for parallel incremental learning.
    Zhu L; Ikeda K; Pang S; Ban T; Sarrafzadeh A
    Neural Netw; 2018 Apr; 100():25-38. PubMed ID: 29432992
    [TBL] [Abstract][Full Text] [Related]  

  • 12. RETRACTION NOTICE: Skin cancer diagnosis based on a hybrid AlexNet/extreme learning machine optimized by Fractional-order Red Fox Optimization algorithm.
    Proc Inst Mech Eng H; 2024 Apr; 238(4):NP5. PubMed ID: 36237139
    [No Abstract]   [Full Text] [Related]  

  • 13. Retraction notice to "Prediction of small-scale piles by considering lateral deflection based on Elman Neural Network - Improved Arithmetic Optimizer algorithm" [ISA Trans. 127 (2022) 473-486].
    Zhang M; Yang J; Ma R; Du Q; Rodriguez D
    ISA Trans; 2024 Jan; 144():501. PubMed ID: 38172036
    [No Abstract]   [Full Text] [Related]  

  • 14. Visual servoing in medical robotics: a survey. Part II: tomographic imaging modalities--techniques and applications.
    Azizian M; Najmaei N; Khoshnam M; Patel R
    Int J Med Robot; 2015 Mar; 11(1):67-79. PubMed ID: 24623371
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Machine Learning for Predicting Patient Wait Times and Appointment Delays.
    Curtis C; Liu C; Bollerman TJ; Pianykh OS
    J Am Coll Radiol; 2018 Sep; 15(9):1310-1316. PubMed ID: 29079248
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fault Diagnosis of Tennessee-Eastman Process Using Orthogonal Incremental Extreme Learning Machine Based on Driving Amount.
    Zou W; Xia Y; Li H
    IEEE Trans Cybern; 2018 Dec; 48(12):3403-3410. PubMed ID: 29994325
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Visual Servoing of Wheeled Mobile Robots Without Desired Images.
    Li B; Zhang X; Fang Y; Shi W
    IEEE Trans Cybern; 2019 Aug; 49(8):2835-2844. PubMed ID: 29994554
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two-step multivariate adaptive regression splines for modeling a quantitative relationship between gas chromatography retention indices and molecular descriptors.
    Xu QS; Massart DL; Liang YZ; Fang KT
    J Chromatogr A; 2003 May; 998(1-2):155-67. PubMed ID: 12862381
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of Machine-Learning Models to Predict Tacrolimus Stable Dose in Renal Transplant Recipients.
    Tang J; Liu R; Zhang YL; Liu MZ; Hu YF; Shao MJ; Zhu LJ; Xin HW; Feng GW; Shang WJ; Meng XG; Zhang LR; Ming YZ; Zhang W
    Sci Rep; 2017 Feb; 7():42192. PubMed ID: 28176850
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Visual servoing in medical robotics: a survey. Part I: endoscopic and direct vision imaging - techniques and applications.
    Azizian M; Khoshnam M; Najmaei N; Patel RV
    Int J Med Robot; 2014 Sep; 10(3):263-74. PubMed ID: 24106103
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.