These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
189 related articles for article (PubMed ID: 32171858)
1. AMPK-dependent phosphorylation of HDAC8 triggers PGM1 expression to promote lung cancer cell survival under glucose starvation. Li Y; Liang R; Sun M; Li Z; Sheng H; Wang J; Xu P; Liu S; Yang W; Lu B; Zhang S; Shan C Cancer Lett; 2020 May; 478():82-92. PubMed ID: 32171858 [TBL] [Abstract][Full Text] [Related]
2. Low levels of AMPK promote epithelial-mesenchymal transition in lung cancer primarily through HDAC4- and HDAC5-mediated metabolic reprogramming. Feng S; Zhang L; Liu X; Li G; Zhang B; Wang Z; Zhang H; Ma H J Cell Mol Med; 2020 Jul; 24(14):7789-7801. PubMed ID: 32519437 [TBL] [Abstract][Full Text] [Related]
3. Phosphoglucomutase 1 inhibits hepatocellular carcinoma progression by regulating glucose trafficking. Jin GZ; Zhang Y; Cong WM; Wu X; Wang X; Wu S; Wang S; Zhou W; Yuan S; Gao H; Yu G; Yang W PLoS Biol; 2018 Oct; 16(10):e2006483. PubMed ID: 30335765 [TBL] [Abstract][Full Text] [Related]
4. 4-hydroxyphenylpyruvate dioxygenase promotes lung cancer growth via pentose phosphate pathway (PPP) flux mediated by LKB1-AMPK/HDAC10/G6PD axis. Shan C; Lu Z; Li Z; Sheng H; Fan J; Qi Q; Liu S; Zhang S Cell Death Dis; 2019 Jul; 10(7):525. PubMed ID: 31285420 [TBL] [Abstract][Full Text] [Related]
5. cAMP signaling increases histone deacetylase 8 expression via the Epac2-Rap1A-Akt pathway in H1299 lung cancer cells. Park JY; Juhnn YS Exp Mol Med; 2017 Feb; 49(2):e297. PubMed ID: 28232663 [TBL] [Abstract][Full Text] [Related]
6. Knock-down of PGM1 inhibits cell viability, glycolysis, and oxidative phosphorylation in glioma under low glucose condition via the Myc signaling pathway. Liu S; Deng Y; Yu Y; Xia X Biochem Biophys Res Commun; 2023 May; 656():38-45. PubMed ID: 36947965 [TBL] [Abstract][Full Text] [Related]
7. cAMP signaling increases histone deacetylase 8 expression by inhibiting JNK-dependent degradation via autophagy and the proteasome system in H1299 lung cancer cells. Park JY; Juhnn YS Biochem Biophys Res Commun; 2016 Feb; 470(2):336-342. PubMed ID: 26792731 [TBL] [Abstract][Full Text] [Related]
8. Knockdown of PGM1 enhances anticancer effects of orlistat in gastric cancer under glucose deprivation. Cao B; Deng H; Cui H; Zhao R; Li H; Wei B; Chen L Cancer Cell Int; 2021 Sep; 21(1):481. PubMed ID: 34507580 [TBL] [Abstract][Full Text] [Related]
10. Phospholipase D1 mediates AMP-activated protein kinase signaling for glucose uptake. Kim JH; Park JM; Yea K; Kim HW; Suh PG; Ryu SH PLoS One; 2010 Mar; 5(3):e9600. PubMed ID: 20231899 [TBL] [Abstract][Full Text] [Related]
11. HBx regulates fatty acid oxidation to promote hepatocellular carcinoma survival during metabolic stress. Wang MD; Wu H; Huang S; Zhang HL; Qin CJ; Zhao LH; Fu GB; Zhou X; Wang XM; Tang L; Wen W; Yang W; Tang SH; Cao D; Guo LN; Zeng M; Wu MC; Yan HX; Wang HY Oncotarget; 2016 Feb; 7(6):6711-26. PubMed ID: 26744319 [TBL] [Abstract][Full Text] [Related]
12. AMPK and PKA interaction in the regulation of survival of liver cancer cells subjected to glucose starvation. Ferretti AC; Tonucci FM; Hidalgo F; Almada E; Larocca MC; Favre C Oncotarget; 2016 Apr; 7(14):17815-28. PubMed ID: 26894973 [TBL] [Abstract][Full Text] [Related]
13. HPIP protooncogene differentially regulates metabolic adaptation and cell fate in breast cancer cells under glucose stress via AMPK and RNF2 dependent pathways. Penugurti V; Khumukcham SS; Padala C; Dwivedi A; Kamireddy KR; Mukta S; Bhopal T; Manavathi B Cancer Lett; 2021 Oct; 518():243-255. PubMed ID: 34302919 [TBL] [Abstract][Full Text] [Related]
14. CHTM1 regulates cancer cell sensitivity to metabolic stress via p38-AIF1 pathway. Babbar M; Huang Y; Curtiss CM; Sheikh MS J Exp Clin Cancer Res; 2019 Jun; 38(1):271. PubMed ID: 31221176 [TBL] [Abstract][Full Text] [Related]
15. Integrin αvβ3 Upregulation in Response to Nutrient Stress Promotes Lung Cancer Cell Metabolic Plasticity. Nam A; Jain S; Wu C; Campos A; Shepard RM; Yu Z; Reddy JP; Von Schalscha T; Weis SM; Onaitis M; Wettersten HI; Cheresh DA Cancer Res; 2024 May; 84(10):1630-1642. PubMed ID: 38588407 [TBL] [Abstract][Full Text] [Related]
16. δ-Opioid receptors stimulate the metabolic sensor AMP-activated protein kinase through coincident signaling with G(q/11)-coupled receptors. Olianas MC; Dedoni S; Olianas A; Onali P Mol Pharmacol; 2012 Feb; 81(2):154-65. PubMed ID: 22031472 [TBL] [Abstract][Full Text] [Related]
17. Malondialdehyde inhibits an AMPK-mediated nuclear translocation and repression activity of ALDH2 in transcription. Choi JW; Kim JH; Cho SC; Ha MK; Song KY; Youn HD; Park SC Biochem Biophys Res Commun; 2011 Jan; 404(1):400-6. PubMed ID: 21130747 [TBL] [Abstract][Full Text] [Related]
18. AMPK-Dependent Phosphorylation of GAPDH Triggers Sirt1 Activation and Is Necessary for Autophagy upon Glucose Starvation. Chang C; Su H; Zhang D; Wang Y; Shen Q; Liu B; Huang R; Zhou T; Peng C; Wong CC; Shen HM; Lippincott-Schwartz J; Liu W Mol Cell; 2015 Dec; 60(6):930-40. PubMed ID: 26626483 [TBL] [Abstract][Full Text] [Related]
19. AMPK-mediated increase of glycolysis as an adaptive response to oxidative stress in human cells: implication of the cell survival in mitochondrial diseases. Wu SB; Wei YH Biochim Biophys Acta; 2012 Feb; 1822(2):233-47. PubMed ID: 22001850 [TBL] [Abstract][Full Text] [Related]
20. Effects of sorafenib on energy metabolism in breast cancer cells: role of AMPK-mTORC1 signaling. Fumarola C; Caffarra C; La Monica S; Galetti M; Alfieri RR; Cavazzoni A; Galvani E; Generali D; Petronini PG; Bonelli MA Breast Cancer Res Treat; 2013 Aug; 141(1):67-78. PubMed ID: 23963659 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]