These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
164 related articles for article (PubMed ID: 32171928)
1. Biogenic supported lipid bilayers as a tool to investigate nano-bio interfaces. Montis C; Salvatore A; Valle F; Paolini L; Carlà F; Bergese P; Berti D J Colloid Interface Sci; 2020 Jun; 570():340-349. PubMed ID: 32171928 [TBL] [Abstract][Full Text] [Related]
2. Neutron Reflectometry reveals the interaction between functionalized SPIONs and the surface of lipid bilayers. Luchini A; Gerelli Y; Fragneto G; Nylander T; Pálsson GK; Appavou MS; Paduano L Colloids Surf B Biointerfaces; 2017 Mar; 151():76-87. PubMed ID: 27987458 [TBL] [Abstract][Full Text] [Related]
3. Gold nanoparticles interacting with synthetic lipid rafts: an AFM investigation. Ridolfi A; Caselli L; Montis C; Mangiapia G; Berti D; Brucale M; Valle F J Microsc; 2020 Dec; 280(3):194-203. PubMed ID: 32432336 [TBL] [Abstract][Full Text] [Related]
4. Shedding light on membrane-templated clustering of gold nanoparticles. Montis C; Caselli L; Valle F; Zendrini A; Carlà F; Schweins R; Maccarini M; Bergese P; Berti D J Colloid Interface Sci; 2020 Aug; 573():204-214. PubMed ID: 32278951 [TBL] [Abstract][Full Text] [Related]
5. Effect of superparamagnetic iron oxide nanoparticles on fluidity and phase transition of phosphatidylcholine liposomal membranes. Santhosh PB; Drašler B; Drobne D; Kreft ME; Kralj S; Makovec D; Ulrih NP Int J Nanomedicine; 2015; 10():6089-103. PubMed ID: 26491286 [TBL] [Abstract][Full Text] [Related]
6. Mitigating effects of osmolytes on the interactions between nanoparticles and supported lipid bilayer. Xia Z; Lau BLT J Colloid Interface Sci; 2020 May; 568():1-7. PubMed ID: 32070850 [TBL] [Abstract][Full Text] [Related]
7. Supported lipid bilayers with encapsulated quantum dots (QDs) via liposome fusion: effect of QD size on bilayer formation and structure. Wlodek M; Kolasinska-Sojka M; Szuwarzynski M; Kereïche S; Kovacik L; Zhou L; Islas L; Warszynski P; Briscoe WH Nanoscale; 2018 Sep; 10(37):17965-17974. PubMed ID: 30226255 [TBL] [Abstract][Full Text] [Related]
8. Formation of supported lipid bilayers at surfaces with controlled curvatures: influence of lipid charge. Sundh M; Svedhem S; Sutherland DS J Phys Chem B; 2011 Jun; 115(24):7838-48. PubMed ID: 21630649 [TBL] [Abstract][Full Text] [Related]
9. Supported lipid bilayers with controlled curvature via colloidal lithography. Sundh M; Manandhar M; Svedhem S; Sutherland DS IEEE Trans Nanobioscience; 2011 Sep; 10(3):187-93. PubMed ID: 21926028 [TBL] [Abstract][Full Text] [Related]
10. Cell adhesion on supported lipid bilayers functionalized with RGD peptides monitored by using a quartz crystal microbalance with dissipation. Zhu X; Wang Z; Zhao A; Huang N; Chen H; Zhou S; Xie X Colloids Surf B Biointerfaces; 2014 Apr; 116():459-64. PubMed ID: 24552662 [TBL] [Abstract][Full Text] [Related]
11. Nonspecific adsorption of charged quantum dots on supported zwitterionic lipid bilayers: real-time monitoring by quartz crystal microbalance with dissipation. Zhang X; Yang S Langmuir; 2011 Mar; 27(6):2528-35. PubMed ID: 21294560 [TBL] [Abstract][Full Text] [Related]
12. Plasmonic Nanoparticle-Interfaced Lipid Bilayer Membranes. Kim S; Seo J; Park HH; Kim N; Oh JW; Nam JM Acc Chem Res; 2019 Oct; 52(10):2793-2805. PubMed ID: 31553568 [TBL] [Abstract][Full Text] [Related]
13. Quartz crystal microbalance for comparison of calcium phosphate precipitation on planar and rough phospholipid bilayers. Yang Z; Zhang C; Huang L Colloids Surf B Biointerfaces; 2014 Apr; 116():265-9. PubMed ID: 24495457 [TBL] [Abstract][Full Text] [Related]
14. Vesicle and bilayer formation of diphytanoylphosphatidylcholine (DPhPC) and diphytanoylphosphatidylethanolamine (DPhPE) mixtures and their bilayers' electrical stability. Andersson M; Jackman J; Wilson D; Jarvoll P; Alfredsson V; Okeyo G; Duran R Colloids Surf B Biointerfaces; 2011 Feb; 82(2):550-61. PubMed ID: 21071188 [TBL] [Abstract][Full Text] [Related]
15. Effects of valinomycin doping on the electrical and structural properties of planar lipid bilayers supported on polyelectrolyte multilayers. Gutiérrez-Pineda E; Andreozzi P; Diamanti E; Anguiano R; Ziolo RF; Moya SE; José Rodríguez-Presa M; Gervasi CA Bioelectrochemistry; 2021 Apr; 138():107688. PubMed ID: 33227594 [TBL] [Abstract][Full Text] [Related]
16. Interaction of Metallic Nanoparticles With Biomimetic Lipid Liquid Crystalline Cubic Interfaces. Cardellini J; Montis C; Barbero F; De Santis I; Caselli L; Berti D Front Bioeng Biotechnol; 2022; 10():848687. PubMed ID: 35372312 [TBL] [Abstract][Full Text] [Related]
17. Preserved transmembrane protein mobility in polymer-supported lipid bilayers derived from cell membranes. Pace H; Simonsson Nyström L; Gunnarsson A; Eck E; Monson C; Geschwindner S; Snijder A; Höök F Anal Chem; 2015 Sep; 87(18):9194-203. PubMed ID: 26268463 [TBL] [Abstract][Full Text] [Related]
18. Structural Characterization of Nanoparticle-Supported Lipid Bilayer Arrays by Grazing Incidence X-ray and Neutron Scattering. Paracini N; Gutfreund P; Welbourn R; Gonzalez-Martinez JF; Zhu K; Miao Y; Yepuri N; Darwish TA; Garvey C; Waldie S; Larsson J; Wolff M; Cárdenas M ACS Appl Mater Interfaces; 2023 Jan; 15(3):3772-3780. PubMed ID: 36625710 [TBL] [Abstract][Full Text] [Related]
19. On the kinetics of adsorption and two-dimensional self-assembly of annexin A5 on supported lipid bilayers. Richter RP; Him JL; Tessier B; Tessier C; Brisson AR Biophys J; 2005 Nov; 89(5):3372-85. PubMed ID: 16085777 [TBL] [Abstract][Full Text] [Related]