BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 32172055)

  • 41. Ideal versus Nonideal Transport of PFAS in Unsaturated Porous Media.
    Brusseau ML; Guo B; Huang D; Yan N; Lyu Y
    Water Res; 2021 Sep; 202():117405. PubMed ID: 34273774
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Repeated measurements of per- and polyfluoroalkyl substances (PFASs) from 1979 to 2007 in males from Northern Norway: assessing time trends, compound correlations and relations to age/birth cohort.
    Nøst TH; Vestergren R; Berg V; Nieboer E; Odland JØ; Sandanger TM
    Environ Int; 2014 Jun; 67():43-53. PubMed ID: 24657493
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Characteristics and human inhalation exposure of ionic per- and polyfluoroalkyl substances (PFASs) in PM
    Liu Y; Liu W; Xu Y; Zhao Y; Wang P; Yu S; Zhang J; Tang Y; Xiong G; Tao S; Liu W
    Sci Total Environ; 2019 Oct; 687():177-187. PubMed ID: 31207508
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Sorption of PFOA onto different laboratory materials: Filter membranes and centrifuge tubes.
    Lath S; Knight ER; Navarro DA; Kookana RS; McLaughlin MJ
    Chemosphere; 2019 May; 222():671-678. PubMed ID: 30735967
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Research progress on the pollution, adsorption, and transport of perfluorooctanoic acid (PFOA ) at the sediment-water interface.
    Ying Yong Sheng Tai Xue Bao; 2021 Nov; 32(11):4147-4155. PubMed ID: 34898131
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effect of ferric oxyhydroxide grain coatings on the transport of bacteriophage PRD1 and Cryptosporidium parvum oocysts in saturated porous media.
    Abudalo RA; Bogatsu YG; Ryan JN; Harvey RW; Metge DW; Elimelech M
    Environ Sci Technol; 2005 Sep; 39(17):6412-9. PubMed ID: 16190194
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effects of kaolinite colloids on Cd²⁺ transport through saturated sand under varying ionic strength conditions: Column experiments and modeling approaches.
    Wikiniyadhanee R; Chotpantarat S; Ong SK
    J Contam Hydrol; 2015 Nov; 182():146-56. PubMed ID: 26387033
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Deposition and transport of functionalized carbon nanotubes in water-saturated sand columns.
    Tian Y; Gao B; Wang Y; Morales VL; Carpena RM; Huang Q; Yang L
    J Hazard Mater; 2012 Apr; 213-214():265-72. PubMed ID: 22361629
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Influences of microwave irradiation on performances of membrane filtration and catalytic degradation of perfluorooctanoic acid (PFOA).
    Liu F; Hua L; Zhang W
    Environ Int; 2020 Oct; 143():105969. PubMed ID: 32702597
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Distinct effects of humic acid on transport and retention of TiO2 rutile nanoparticles in saturated sand columns.
    Chen G; Liu X; Su C
    Environ Sci Technol; 2012 Jul; 46(13):7142-50. PubMed ID: 22681399
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Simulating PFAS transport influenced by rate-limited multi-process retention.
    Brusseau ML
    Water Res; 2020 Jan; 168():115179. PubMed ID: 31639593
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Transport of oxytetracycline through saturated porous media: role of surface chemical heterogeneity.
    Jin Y; Liu M; Zhang Q; Farooq U; Chen W; Lu T; Qi Z
    Environ Sci Process Impacts; 2022 Dec; 24(12):2368-2377. PubMed ID: 36317984
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Co-transport of graphene oxide and titanium dioxide nanoparticles in saturated quartz sand: Influences of solution pH and metal ions.
    Xia T; Lin Y; Guo X; Li S; Cui J; Ping H; Zhang J; Zhong R; Du L; Han C; Zhu L
    Environ Pollut; 2019 Aug; 251():723-730. PubMed ID: 31112926
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Transport behaviors of plastic particles in saturated quartz sand without and with biochar/Fe
    Tong M; He L; Rong H; Li M; Kim H
    Water Res; 2020 Feb; 169():115284. PubMed ID: 31739235
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Transport of nanoparticulate TiO
    Motellier S; Arnould A; Locatelli D; Labille J
    Sci Total Environ; 2022 Mar; 811():152408. PubMed ID: 34915000
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Effect of surface coatings, grain size, and ionic strength on the maximum attainable coverage of bacteria on sand surfaces.
    Bolster CH; Mills AL; Hornberger GM; Herman JS
    J Contam Hydrol; 2001 Aug; 50(3-4):287-305. PubMed ID: 11523329
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Transport, retention, and long-term release behavior of ZnO nanoparticle aggregates in saturated quartz sand: Role of solution pH and biofilm coating.
    Han Y; Hwang G; Kim D; Bradford SA; Lee B; Eom I; Kim PJ; Choi SQ; Kim H
    Water Res; 2016 Mar; 90():247-257. PubMed ID: 26741396
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Unification of surface tension isotherms of PFOA or GenX salts in electrolyte solutions by mean ionic activity.
    Wang J; Niven RK
    Chemosphere; 2021 Oct; 280():130715. PubMed ID: 33965869
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Influence of organic matter on the transport of Cryptosporidium parvum oocysts in a ferric oxyhydroxide-coated quartz sand saturated porous medium.
    Abudalo RA; Ryan JN; Harvey RW; Metge DW; Landkamer L
    Water Res; 2010 Feb; 44(4):1104-13. PubMed ID: 19853880
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Humic acid facilitates the transport of ARS-labeled hydroxyapatite nanoparticles in iron oxyhydroxide-coated sand.
    Wang D; Bradford SA; Harvey RW; Gao B; Cang L; Zhou D
    Environ Sci Technol; 2012 Mar; 46(5):2738-45. PubMed ID: 22316080
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.