These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 32172096)
1. Spirulina hydrothermal carbonization: Effect on hydrochar properties and sulfur transformation. Zhang Z; Zhao Y; Wang T Bioresour Technol; 2020 Jun; 306():123148. PubMed ID: 32172096 [TBL] [Abstract][Full Text] [Related]
2. Co-hydrothermal carbonization of sludge and food waste for hydrochar valorization: Effect of mutual interaction on sulfur transformation. Wang Z; Huang J; Wang J; Hu Z; Xu M; Qiao Y Sci Total Environ; 2023 Dec; 905():167318. PubMed ID: 37742985 [TBL] [Abstract][Full Text] [Related]
3. Nitrogen distribution and evolution during persulfate assisted hydrothermal carbonization of spirulina. Zhang Z; Yang J; Li L; Qian J; Zhao Y; Wang T Bioresour Technol; 2021 Dec; 342():125980. PubMed ID: 34583113 [TBL] [Abstract][Full Text] [Related]
4. Persulfate assisted hydrothermal processing of spirulina for enhanced deoxidation carbonization. Wang T; Liu X; Wang D; Gong Z; Si B; Zhai Y Bioresour Technol; 2021 Feb; 322():124543. PubMed ID: 33348116 [TBL] [Abstract][Full Text] [Related]
5. Effect of temperature on the sulfur fate during hydrothermal carbonization of sewage sludge. Wang Z; Zhai Y; Wang T; Peng C; Li S; Wang B; Liu X; Li C Environ Pollut; 2020 May; 260():114067. PubMed ID: 32014751 [TBL] [Abstract][Full Text] [Related]
6. Thermal hydrolysis prior to hydrothermal carbonization resulted in high quality sludge hydrochar with low nitrogen and sulfur content. Liu X; Yuan S; Dai X Waste Manag; 2024 Mar; 176():117-127. PubMed ID: 38277809 [TBL] [Abstract][Full Text] [Related]
7. Evolution of elemental nitrogen involved in the carbonization mechanism and product features from wet biowaste. Zhang Z; Xuan X; Wang J; Zhao X; Yang J; Zhao Y; Qian J; TengfeiWang Sci Total Environ; 2023 Aug; 884():163826. PubMed ID: 37121324 [TBL] [Abstract][Full Text] [Related]
8. Hydrothermal carbonization of coking sludge: Formation mechanism and fuel characteristic of hydrochar. Zhong J; Zhu W; Sun J; Mu B; Wang X; Xue Z; Cao J Chemosphere; 2024 Jan; 346():140504. PubMed ID: 37914047 [TBL] [Abstract][Full Text] [Related]
9. Influence of temperature on nitrogen fate during hydrothermal carbonization of food waste. Wang T; Zhai Y; Zhu Y; Peng C; Xu B; Wang T; Li C; Zeng G Bioresour Technol; 2018 Jan; 247():182-189. PubMed ID: 28950125 [TBL] [Abstract][Full Text] [Related]
10. Co-hydrothermal carbonization of food waste-woody sawdust blend: Interaction effects on the hydrochar properties and nutrients characteristics. Wang T; Si B; Gong Z; Zhai Y; Cao M; Peng C Bioresour Technol; 2020 Nov; 316():123900. PubMed ID: 32739578 [TBL] [Abstract][Full Text] [Related]
11. Hydrothermal carbonization of waste from leather processing and feasibility of produced hydrochar as an alternative solid fuel. Lee J; Hong J; Jang D; Park KY J Environ Manage; 2019 Oct; 247():115-120. PubMed ID: 31234046 [TBL] [Abstract][Full Text] [Related]
12. Speciation and transformation of nitrogen for spirulina hydrothermal carbonization. Xiao H; Zhai Y; Xie J; Wang T; Wang B; Li S; Li C Bioresour Technol; 2019 Aug; 286():121385. PubMed ID: 31051399 [TBL] [Abstract][Full Text] [Related]
13. Preparation of solid organic fertilizer by co-hydrothermal carbonization of peanut residue and corn cob: A study on nutrient conversion. Li CS; Cai RR Sci Total Environ; 2022 Sep; 838(Pt 2):155867. PubMed ID: 35568172 [TBL] [Abstract][Full Text] [Related]
14. Hydrochar production from high-ash low-lipid microalgal biomass via hydrothermal carbonization: Effects of operational parameters and products characterization. Khoo CG; Lam MK; Mohamed AR; Lee KT Environ Res; 2020 Sep; 188():109828. PubMed ID: 32798947 [TBL] [Abstract][Full Text] [Related]
15. A review on hydrothermal carbonization of potential biomass wastes, characterization and environmental applications of hydrochar, and biorefinery perspectives of the process. Cavali M; Libardi Junior N; de Sena JD; Woiciechowski AL; Soccol CR; Belli Filho P; Bayard R; Benbelkacem H; de Castilhos Junior AB Sci Total Environ; 2023 Jan; 857(Pt 3):159627. PubMed ID: 36280070 [TBL] [Abstract][Full Text] [Related]
16. Iron valence state evolution and hydrochar properties under hydrothermal carbonization of dyeing sludge. Xiao Y; Ding L; Yang Y; Areeprasert C; Gao Y; Chen X; Wang F Waste Manag; 2022 Oct; 152():94-101. PubMed ID: 35998440 [TBL] [Abstract][Full Text] [Related]
17. Coupling influences of organic components and temperature on nitrogen transformation and hydrochar characterization during hydrothermal carbonization of sewage sludge. Xie L; Gou L; Xu D; Kapusta K; Dai L; Wang Y Sci Total Environ; 2023 Mar; 866():161354. PubMed ID: 36603624 [TBL] [Abstract][Full Text] [Related]
18. Hydrothermal carbonization of kitchen waste: An analysis of solid and aqueous products and the application of hydrochar to paddy soil. Xu Y; Wang B; Ding S; Zhao M; Ji Y; Xie W; Feng Z; Feng Y Sci Total Environ; 2022 Dec; 850():157953. PubMed ID: 35963404 [TBL] [Abstract][Full Text] [Related]
19. Seawater as supplemental moisture: The effect of Co-hydrothermal carbonization products obtained from chicken manure and cornstalk. Li Z; Jia J; Zhao W; Jiang L; Tian W J Environ Manage; 2023 Nov; 345():118819. PubMed ID: 37597367 [TBL] [Abstract][Full Text] [Related]
20. Effect of ionic liquid assisted hydrothermal carbonization on the properties and gasification reactivity of hydrochar derived from eucalyptus. Huang Z; Shi L; Muhammad Y; Li L J Colloid Interface Sci; 2021 Mar; 586():423-432. PubMed ID: 33183756 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]