These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
159 related articles for article (PubMed ID: 32172147)
1. A strict formulation of a nonlinear Helmholtz equation for the propagation of sound in bubbly liquids. Part II: Application to ultrasonic cavitation. Trujillo FJ Ultrason Sonochem; 2020 Jul; 65():105056. PubMed ID: 32172147 [TBL] [Abstract][Full Text] [Related]
2. A strict formulation of a nonlinear Helmholtz equation for the propagation of sound in bubbly liquids. Part I: Theory and validation at low acoustic pressure amplitudes. Trujillo FJ Ultrason Sonochem; 2018 Oct; 47():75-98. PubMed ID: 29908609 [TBL] [Abstract][Full Text] [Related]
3. Numerical simulation of the nonlinear ultrasonic pressure wave propagation in a cavitating bubbly liquid inside a sonochemical reactor. Dogan H; Popov V Ultrason Sonochem; 2016 May; 30():87-97. PubMed ID: 26611813 [TBL] [Abstract][Full Text] [Related]
4. A simple model of ultrasound propagation in a cavitating liquid. Part I: Theory, nonlinear attenuation and traveling wave generation. Louisnard O Ultrason Sonochem; 2012 Jan; 19(1):56-65. PubMed ID: 21764348 [TBL] [Abstract][Full Text] [Related]
5. Nonlinear ultrasonic waves in bubbly liquids with nonhomogeneous bubble distribution: Numerical experiments. Vanhille C; Campos-Pozuelo C Ultrason Sonochem; 2009 Jun; 16(5):669-85. PubMed ID: 19171496 [TBL] [Abstract][Full Text] [Related]
6. Numerical modelling of ultrasonic waves in a bubbly Newtonian liquid using a high-order acoustic cavitation model. Lebon GSB; Tzanakis I; Djambazov G; Pericleous K; Eskin DG Ultrason Sonochem; 2017 Jul; 37():660-668. PubMed ID: 28427680 [TBL] [Abstract][Full Text] [Related]
7. Influences of non-uniform pressure field outside bubbles on the propagation of acoustic waves in dilute bubbly liquids. Zhang Y; Du X Ultrason Sonochem; 2015 Sep; 26():119-127. PubMed ID: 25771332 [TBL] [Abstract][Full Text] [Related]
8. Theoretical and experimental investigations of ultrasonic sound fields in thin bubbly liquid layers for ultrasonic cavitation peening. Bai F; Long Y; Saalbach KA; Twiefel J Ultrasonics; 2019 Mar; 93():130-138. PubMed ID: 30508727 [TBL] [Abstract][Full Text] [Related]
9. Nonlinear ultrasonic propagation in bubbly liquids: a numerical model. Vanhille C; Campos-Pozuelo C Ultrasound Med Biol; 2008 May; 34(5):792-808. PubMed ID: 18314254 [TBL] [Abstract][Full Text] [Related]
10. Prediction of the acoustic and bubble fields in insonified freeze-drying vials. Louisnard O; Cogné C; Labouret S; Montes-Quiroz W; Peczalski R; Baillon F; Espitalier F Ultrason Sonochem; 2015 Sep; 26():186-192. PubMed ID: 25800984 [TBL] [Abstract][Full Text] [Related]
11. A numerical model for the study of the difference frequency generated from nonlinear mixing of standing ultrasonic waves in bubbly liquids. Tejedor Sastre MT; Vanhille C Ultrason Sonochem; 2017 Jan; 34():881-888. PubMed ID: 27773316 [TBL] [Abstract][Full Text] [Related]
12. Two-Dimensional Numerical Simulations of Ultrasound in Liquids with Gas Bubble Agglomerates: Examples of Bubbly-Liquid-Type Acoustic Metamaterials (BLAMMs). Vanhille C Sensors (Basel); 2017 Jan; 17(1):. PubMed ID: 28106748 [TBL] [Abstract][Full Text] [Related]
13. Probing the pressure dependence of sound speed and attenuation in bubbly media: Experimental observations, a theoretical model and numerical calculations. Sojahrood AJ; Li Q; Haghi H; Karshafian R; Porter TM; Kolios MC Ultrason Sonochem; 2023 May; 95():106319. PubMed ID: 36931196 [TBL] [Abstract][Full Text] [Related]
14. Two types of nonlinear wave equations for diffractive beams in bubbly liquids with nonuniform bubble number density. Kanagawa T J Acoust Soc Am; 2015 May; 137(5):2642-54. PubMed ID: 25994696 [TBL] [Abstract][Full Text] [Related]
15. Dissipation of ultrasonic wave propagation in bubbly liquids considering the effect of compressibility to the first order of acoustical Mach number. Jamshidi R; Brenner G Ultrasonics; 2013 Apr; 53(4):842-8. PubMed ID: 23290824 [TBL] [Abstract][Full Text] [Related]
16. Comparison of frequency domain and time domain methods for the numerical simulation of contactless ultrasonic cavitation. Beckwith C; Djambazov G; Pericleous K; Tonry C Ultrason Sonochem; 2022 Sep; 89():106138. PubMed ID: 36049449 [TBL] [Abstract][Full Text] [Related]
17. Numerical simulations of stable cavitation bubble generation and primary Bjerknes forces in a three-dimensional nonlinear phased array focused ultrasound field. Vanhille C Ultrason Sonochem; 2020 May; 63():104972. PubMed ID: 31978709 [TBL] [Abstract][Full Text] [Related]
18. Effective medium approach to linear acoustics in bubbly liquids. Kargl SG J Acoust Soc Am; 2002 Jan; 111(1 Pt 1):168-73. PubMed ID: 11831791 [TBL] [Abstract][Full Text] [Related]
19. A simple model of ultrasound propagation in a cavitating liquid. Part II: Primary Bjerknes force and bubble structures. Louisnard O Ultrason Sonochem; 2012 Jan; 19(1):66-76. PubMed ID: 21764349 [TBL] [Abstract][Full Text] [Related]
20. Nonlinear Maximization of the Sum-Frequency Component from Two Ultrasonic Signals in a Bubbly Liquid. Tejedor Sastre MT; Vanhille C Sensors (Basel); 2019 Dec; 20(1):. PubMed ID: 31878093 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]