BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 32172435)

  • 1. Simvastatin decreases the silver resistance of E. faecalis through compromising the entrapping function of extracellular polymeric substances against silver.
    Cui J; Duan M; Sun Q; Fan W
    World J Microbiol Biotechnol; 2020 Mar; 36(4):54. PubMed ID: 32172435
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Establishment and characterization of silver-resistant Enterococcus faecalis.
    Cui J; Sun Q; Duan M; Liu D; Fan W
    Folia Microbiol (Praha); 2020 Aug; 65(4):721-733. PubMed ID: 32086752
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanisms of Triton X-100 reducing the Ag
    Lv S; Duan M; Fan B; Fan W
    World J Microbiol Biotechnol; 2024 Jun; 40(7):231. PubMed ID: 38833075
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simvastatin enhanced antimicrobial effect of Ag
    Fan W; Duan M; Sun Q; Fan B
    J Biomater Sci Polym Ed; 2020 Dec; 31(18):2331-2346. PubMed ID: 32880530
    [No Abstract]   [Full Text] [Related]  

  • 5. Biological synthesis of silver nanoparticles using β-1, 3 glucan binding protein and their antibacterial, antibiofilm and cytotoxic potential.
    Anjugam M; Vaseeharan B; Iswarya A; Divya M; Prabhu NM; Sankaranarayanan K
    Microb Pathog; 2018 Feb; 115():31-40. PubMed ID: 29208541
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Positively charged imidazolium-based ionic liquid-protected silver nanoparticles: a promising disinfectant in root canal treatment.
    Abbaszadegan A; Nabavizadeh M; Gholami A; Aleyasin ZS; Dorostkar S; Saliminasab M; Ghasemi Y; Hemmateenejad B; Sharghi H
    Int Endod J; 2015 Aug; 48(8):790-800. PubMed ID: 25269666
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-defense mechanisms of microorganisms from the antimicrobial effect of silver nanoparticles: Highlight the role of extracellular polymeric substances.
    Yang Y; Chen X; Zhang N; Sun B; Wang K; Zhang Y; Zhu L
    Water Res; 2022 Jun; 218():118452. PubMed ID: 35447420
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Silver nanoparticles formation by extracellular polymeric substances (EPS) from electroactive bacteria.
    Li SW; Zhang X; Sheng GP
    Environ Sci Pollut Res Int; 2016 May; 23(9):8627-33. PubMed ID: 26797954
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of the antibacterial efficacy of silver nanoparticles against Enterococcus faecalis biofilm.
    Wu D; Fan W; Kishen A; Gutmann JL; Fan B
    J Endod; 2014 Feb; 40(2):285-90. PubMed ID: 24461420
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of extracellular polymeric substances on the behavior and toxicity of silver nanoparticles and ions to green algae Chlorella vulgaris.
    Zheng S; Zhou Q; Chen C; Yang F; Cai Z; Li D; Geng Q; Feng Y; Wang H
    Sci Total Environ; 2019 Apr; 660():1182-1190. PubMed ID: 30743913
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Light-induced reduction of silver ions to silver nanoparticles in aquatic environments by microbial extracellular polymeric substances (EPS).
    Zhang X; Yang CW; Yu HQ; Sheng GP
    Water Res; 2016 Dec; 106():242-248. PubMed ID: 27728818
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antibacterial Synergy of Silver Nanoparticles with Gentamicin and Chloramphenicol against
    Katva S; Das S; Moti HS; Jyoti A; Kaushik S
    Pharmacogn Mag; 2018 Jan; 13(Suppl 4):S828-S833. PubMed ID: 29491640
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bio-fabricated silver nanoparticles preferentially targets Gram positive depending on cell surface charge.
    Mandal D; Kumar Dash S; Das B; Chattopadhyay S; Ghosh T; Das D; Roy S
    Biomed Pharmacother; 2016 Oct; 83():548-558. PubMed ID: 27449536
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antibiofilm efficacy of silver nanoparticles as a vehicle for calcium hydroxide medicament against Enterococcus faecalis.
    Afkhami F; Pourhashemi SJ; Sadegh M; Salehi Y; Fard MJ
    J Dent; 2015 Dec; 43(12):1573-9. PubMed ID: 26327612
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proteomic analysis of an Enterococcus faecalis mutant generated against the exposure to silver nanoparticles.
    Salas-Orozco MF; Niño-Martínez N; Martínez-Castañón GA; Méndez FT; Morán GMM; Bendaña-Piñeiro AE; Ruiz F; Bach H
    J Appl Microbiol; 2022 Jan; 132(1):244-255. PubMed ID: 34134177
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synergistic effects of silver ions and metformin against enterococcus faecalis under high-glucose conditions in vitro.
    Wu X; Fan W; Fan B
    BMC Microbiol; 2021 Sep; 21(1):261. PubMed ID: 34587895
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Formation of silver nanoparticles in aquatic environments facilitated by algal extracellular polymeric substances: Importance of chloride ions and light.
    Xiong S; Cao X; Fang H; Guo H; Xing B
    Sci Total Environ; 2021 Jun; 775():145867. PubMed ID: 33621870
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Changes in syntrophic microbial communities, EPS matrix, and gene-expression patterns in biofilm anode in response to silver nanoparticles exposure.
    Zakaria BS; Dhar BR
    Sci Total Environ; 2020 Sep; 734():139395. PubMed ID: 32454336
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synergistic mechanism of Ag
    Fan W; Sun Q; Li Y; Tay FR; Fan B
    J Nanobiotechnology; 2018 Jan; 16(1):10. PubMed ID: 29386060
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microbial extracellular polymeric substances reduce Ag+ to silver nanoparticles and antagonize bactericidal activity.
    Kang F; Alvarez PJ; Zhu D
    Environ Sci Technol; 2014; 48(1):316-22. PubMed ID: 24328348
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.