These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 32172768)
21. Responses of rice (Oryza sativa L.) genotypes to different levels of submergence. Afrin W; Nafis MH; Hossain MA; Islam MM; Hossain MA C R Biol; 2018 Feb; 341(2):85-96. PubMed ID: 29398646 [TBL] [Abstract][Full Text] [Related]
22. Effects of salinity on the photosynthetic apparatus of two Paulownia lines. Stefanov M; Yotsova E; Rashkov G; Ivanova K; Markovska Y; Apostolova EL Plant Physiol Biochem; 2016 Apr; 101():54-59. PubMed ID: 26854407 [TBL] [Abstract][Full Text] [Related]
23. Response of carbon assimilation and chlorophyll fluorescence to soybean leaf phosphorus across CO2: Alternative electron sink, nutrient efficiency and critical concentration. Singh SK; Reddy VR J Photochem Photobiol B; 2015 Oct; 151():276-84. PubMed ID: 26343044 [TBL] [Abstract][Full Text] [Related]
24. The key regulator of submergence tolerance, SUB1A, promotes photosynthetic and metabolic recovery from submergence damage in rice leaves. Alpuerto JB; Hussain RM; Fukao T Plant Cell Environ; 2016 Mar; 39(3):672-84. PubMed ID: 26477688 [TBL] [Abstract][Full Text] [Related]
25. The efficiency of chlorophyll fluorescence as a selection criterion for salinity and climate aridity tolerance in barley genotypes. Hammami Z; Tounsi-Hammami S; Nhamo N; Rezgui S; Trifa Y Front Plant Sci; 2024; 15():1324388. PubMed ID: 38863544 [TBL] [Abstract][Full Text] [Related]
26. Protective Effect of foliar application of sulfur on photosynthesis and antioxidative defense system of rice under the stress of Cd. Liu J; Hou H; Zhao L; Sun Z; Li H Sci Total Environ; 2020 Mar; 710():136230. PubMed ID: 31927283 [TBL] [Abstract][Full Text] [Related]
27. [Response of strawberry leaves photosynthesis to strong light and its mechanism]. Xu K; Guo Y; Zhang S; Zhou H; Zheng Y Ying Yong Sheng Tai Xue Bao; 2005 Jan; 16(1):73-8. PubMed ID: 15852961 [TBL] [Abstract][Full Text] [Related]
28. [Effect of different levels of elevated CO Fan PP; Feng F; Liu C; Sun WJ; Yu LF; Ke HN; Chen ST; Hu ZH Ying Yong Sheng Tai Xue Bao; 2019 Nov; 30(11):3735-3744. PubMed ID: 31833686 [TBL] [Abstract][Full Text] [Related]
29. [Effects of soil structure improvement on chlorophyll fluorescence parameters and yield of rice in a coastal reclamation region]. A LB; Yao HZ; Song YF; Fei YH; She DL Ying Yong Sheng Tai Xue Bao; 2019 Oct; 30(10):3435-3442. PubMed ID: 31621230 [TBL] [Abstract][Full Text] [Related]
30. Determination of Xia Q; Tang H; Fu L; Tan J; Govindjee G; Guo Y Plant Phenomics; 2023; 5():0034. PubMed ID: 37011261 [TBL] [Abstract][Full Text] [Related]
31. Effects of di-n-butyl phthalate and di (2-ethylhexyl) phthalate on the growth, photosynthesis, and chlorophyll fluorescence of wheat seedlings. Gao M; Qi Y; Song W; Xu H Chemosphere; 2016 May; 151():76-83. PubMed ID: 26928333 [TBL] [Abstract][Full Text] [Related]
32. [Effects of different water potentials on leaf gas exchange and chlorophyll fluorescence parameters of cucumber during post-flowering growth stage]. Lin L; Tang Y; Zhang JT; Yan WL; Xiao JH; Ding C; Dong C; Ji ZS Ying Yong Sheng Tai Xue Bao; 2015 Jul; 26(7):2030-40. PubMed ID: 26710629 [TBL] [Abstract][Full Text] [Related]
33. [Effects of light intensity on photosynthetic capacity and light energy allocation in Panax notoginseng.]. Xu XZ; Zhang JY; Zhang GH; Long GQ; Yang SC; Chen ZJ; Wei FG; Chen JW Ying Yong Sheng Tai Xue Bao; 2018 Jan; 29(1):193-204. PubMed ID: 29692028 [TBL] [Abstract][Full Text] [Related]
34. Eco-Physiological Screening of Different Tomato Genotypes in Response to High Temperatures: A Combined Field-to-Laboratory Approach. Arena C; Conti S; Francesca S; Melchionna G; Hájek J; Barták M; Barone A; Rigano MM Plants (Basel); 2020 Apr; 9(4):. PubMed ID: 32326566 [TBL] [Abstract][Full Text] [Related]
35. Wheat cultivars selected for high Fv /Fm under heat stress maintain high photosynthesis, total chlorophyll, stomatal conductance, transpiration and dry matter. Sharma DK; Andersen SB; Ottosen CO; Rosenqvist E Physiol Plant; 2015 Feb; 153(2):284-98. PubMed ID: 24962705 [TBL] [Abstract][Full Text] [Related]
37. [Effects of low temperature stress on photosynthetic performance of different genotypes wheat cultivars]. Guan YN; Huang ZL; Zhang WJ; Shi XD; Zhang PP Ying Yong Sheng Tai Xue Bao; 2013 Jul; 24(7):1895-9. PubMed ID: 24175519 [TBL] [Abstract][Full Text] [Related]
38. Thermostability and photostability of photosystem II of the resurrection plant Haberlea rhodopensis studied by chlorophyll fluorescence. Georgieva K; Maslenkova L Z Naturforsch C J Biosci; 2006; 61(3-4):234-40. PubMed ID: 16729582 [TBL] [Abstract][Full Text] [Related]
39. Growth inhibition and effect on photosystem by three imidazolium chloride ionic liquids in rice seedlings. Liu H; Zhang S; Zhang X; Chen C J Hazard Mater; 2015 Apr; 286():440-8. PubMed ID: 25603293 [TBL] [Abstract][Full Text] [Related]
40. Chlorophyll Fluorescence and Reflectance-Based Non-Invasive Quantification of Blast, Bacterial Blight and Drought Stresses in Rice. Šebela D; Quiñones C; Cruz CV; Ona I; Olejnícková J; Jagadish KSV Plant Cell Physiol; 2018 Jan; 59(1):30-43. PubMed ID: 29370434 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]