These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
42. Effect of differently methyl-substituted ionic liquids on Scenedesmus obliquus growth, photosynthesis, respiration, and ultrastructure. Fan H; Jin M; Wang H; Xu Q; Xu L; Wang C; Du S; Liu H Environ Pollut; 2019 Jul; 250():155-165. PubMed ID: 30995569 [TBL] [Abstract][Full Text] [Related]
43. Alteration in plant spacing improves submergence tolerance in Sub1 and non-Sub1 rice (cv. IR64) by better light interception and effective carbohydrate utilisation under stress. Bhaduri D; Chakraborty K; Nayak AK; Shahid M; Tripathi R; Behera R; Singh S; Srivastava AK Funct Plant Biol; 2020 Sep; 47(10):891-903. PubMed ID: 32553088 [TBL] [Abstract][Full Text] [Related]
44. Chlorophyll a fluorescence and Raman spectroscopy can monitor activation/deactivation of photosynthesis and carotenoids in Antarctic lichens. Mishra KB; Vítek P; Mishra A; Hájek J; Barták M Spectrochim Acta A Mol Biomol Spectrosc; 2020 Oct; 239():118458. PubMed ID: 32480272 [TBL] [Abstract][Full Text] [Related]
45. Relationship between xanthophyll cycle and non-photochemical quenching in rice (Oryza sativa L.) plants in response to light stress. Vaz J; Sharma PK Indian J Exp Biol; 2011 Jan; 49(1):60-7. PubMed ID: 21365998 [TBL] [Abstract][Full Text] [Related]
46. Low nitrogen stress regulates chlorophyll fluorescence in coordination with photosynthesis and Rubisco efficiency of rice. Tantray AY; Bashir SS; Ahmad A Physiol Mol Biol Plants; 2020 Jan; 26(1):83-94. PubMed ID: 32158122 [TBL] [Abstract][Full Text] [Related]
47. [Changes of photosynthesis parameters and chlorophyll fluorescence around sprout tumble of Pinellia ternata under high temperature stress]. Xue J; Wang X; Zhang A; Chang L Zhongguo Zhong Yao Za Zhi; 2010 Sep; 35(17):2233-5. PubMed ID: 21137327 [TBL] [Abstract][Full Text] [Related]
48. Use of chlorophyll fluorescence in metal-stress research: a case study with the green microalga Scenedesmus. Mallick N; Mohn FH Ecotoxicol Environ Saf; 2003 May; 55(1):64-9. PubMed ID: 12706394 [TBL] [Abstract][Full Text] [Related]
49. Nonphotochemical quenching of excitation energy in photosystem II. A picosecond time-resolved study of the low yield of chlorophyll a fluorescence induced by single-turnover flash in isolated spinach thylakoids. Vasil'ev S; Bruce D Biochemistry; 1998 Aug; 37(31):11046-54. PubMed ID: 9693000 [TBL] [Abstract][Full Text] [Related]
50. Differences in physiological and biochemical characteristics in response to single and combined drought and salinity stresses between wheat genotypes differing in salt tolerance. Dugasa MT; Cao F; Ibrahim W; Wu F Physiol Plant; 2019 Feb; 165(2):134-143. PubMed ID: 29635753 [TBL] [Abstract][Full Text] [Related]
51. Harnessing leaf photosynthetic traits and antioxidant defence for multiple stress tolerance in three premium indigenous rice landraces of Jeypore tract of Odisha, India. Panda D; Mohanty B; Behera PK; Barik J; Mishra SS Funct Plant Biol; 2020 Feb; 47(2):99-111. PubMed ID: 31856943 [TBL] [Abstract][Full Text] [Related]
52. Chlorophyll fluorescence-based high-throughput phenotyping facilitates the genetic dissection of photosynthetic heat tolerance in African (Oryza glaberrima) and Asian (Oryza sativa) rice. Robson JK; Ferguson JN; McAusland L; Atkinson JA; Tranchant-Dubreuil C; Cubry P; Sabot F; Wells DM; Price AH; Wilson ZA; Murchie EH J Exp Bot; 2023 Sep; 74(17):5181-5197. PubMed ID: 37347829 [TBL] [Abstract][Full Text] [Related]
53. Wavelet analysis of pulse-amplitude-modulated chlorophyll fluorescence for differentiation of plant samples. Guo Y; Zhou Y; Tan J J Theor Biol; 2015 Apr; 370():116-20. PubMed ID: 25665719 [TBL] [Abstract][Full Text] [Related]
54. Differential expression of salt-responsive genes to salinity stress in salt-tolerant and salt-sensitive rice (Oryza sativa L.) at seedling stage. Singh V; Singh AP; Bhadoria J; Giri J; Singh J; T V V; Sharma PC Protoplasma; 2018 Nov; 255(6):1667-1681. PubMed ID: 29740721 [TBL] [Abstract][Full Text] [Related]
55. Perspective of Monitoring Heavy Metals by Moss Visible Chlorophyll Fluorescence Parameters. Chen YE; Wu N; Zhang ZW; Yuan M; Yuan S Front Plant Sci; 2019; 10():35. PubMed ID: 30740119 [TBL] [Abstract][Full Text] [Related]
56. [Effects of two kinds of allelochemicals on photosynthesis and chlorophyll fluorescence parameters of Solanum melongena L. seedlings]. Yu J; Zhang Y; Niu C; Li J Ying Yong Sheng Tai Xue Bao; 2006 Sep; 17(9):1629-32. PubMed ID: 17147170 [TBL] [Abstract][Full Text] [Related]
57. Simultaneous responses of photosystem II and soluble proteins of rapeseed to cold acclimation. Arminian A; Dehghani Bidgoli R Cell Mol Biol (Noisy-le-grand); 2019 Feb; 65(2):37-49. PubMed ID: 30860470 [TBL] [Abstract][Full Text] [Related]
58. Genetic variability and heritability of chlorophyll a fluorescence parameters in Scots pine (Pinus sylvestris L.). Čepl J; Holá D; Stejskal J; Korecký J; Kočová M; Lhotáková Z; Tomášková I; Palovská M; Rothová O; Whetten RW; Kaňák J; Albrechtová J; Lstibůrek M Tree Physiol; 2016 Jul; 36(7):883-95. PubMed ID: 27126227 [TBL] [Abstract][Full Text] [Related]
59. Role of mineral nutrients, antioxidants, osmotic adjustment and PSII stability in salt tolerance of contrasting wheat genotypes. Hussain N; Sohail Y; Shakeel N; Javed M; Bano H; Gul HS; Zafar ZU; Frahat Zaky Hassan I; Ghaffar A; Athar HU; Ajaj R Sci Rep; 2022 Jul; 12(1):12677. PubMed ID: 35879515 [TBL] [Abstract][Full Text] [Related]
60. Seasonality and Small Spatial-Scale Variation of Chlorophyll Ruchika ; Csintalan Z; Péli ER Plants (Basel); 2020 Jan; 9(1):. PubMed ID: 31940766 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]