These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 32172842)

  • 1. The effect of dehydration/rehydration of bacterial nanocellulose on its tensile strength and physicochemical properties.
    Stanisławska A; Staroszczyk H; Szkodo M
    Carbohydr Polym; 2020 May; 236():116023. PubMed ID: 32172842
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of the ex situ physical and in situ chemical modification of bacterial nanocellulose on mechanical properties in the context of its potential applications in heart valve design.
    Stanisławska A; Szkodo M; Staroszczyk H; Dawidowska K; Kołaczkowska M; Siondalski P
    Int J Biol Macromol; 2024 Jun; 269(Pt 1):131951. PubMed ID: 38710253
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Using in situ nanocellulose-coating technology based on dynamic bacterial cultures for upgrading conventional biomedical materials and reinforcing nanocellulose hydrogels.
    Zhang P; Chen L; Zhang Q; Jönsson LJ; Hong FF
    Biotechnol Prog; 2016 Jul; 32(4):1077-84. PubMed ID: 27088548
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanical evaluation of bacterial nanocellulose as an implant material for ear cartilage replacement.
    Nimeskern L; Martínez Ávila H; Sundberg J; Gatenholm P; Müller R; Stok KS
    J Mech Behav Biomed Mater; 2013 Jun; 22():12-21. PubMed ID: 23611922
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Laser-structured bacterial nanocellulose hydrogels support ingrowth and differentiation of chondrocytes and show potential as cartilage implants.
    Ahrem H; Pretzel D; Endres M; Conrad D; Courseau J; Müller H; Jaeger R; Kaps C; Klemm DO; Kinne RW
    Acta Biomater; 2014 Mar; 10(3):1341-53. PubMed ID: 24334147
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessment of the usefulness of bacterial cellulose produced by Gluconacetobacter xylinus E
    Kołaczkowska M; Siondalski P; Kowalik MM; Pęksa R; Długa A; Zając W; Dederko P; Kołodziejska I; Malinowska-Pańczyk E; Sinkiewicz I; Staroszczyk H; Śliwińska A; Stanisławska A; Szkodo M; Pałczyńska P; Jabłoński G; Borman A; Wilczek P
    Mater Sci Eng C Mater Biol Appl; 2019 Apr; 97():302-312. PubMed ID: 30678915
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physicochemical Properties and In Vitro Biocompatibility of Three Bacterial Nanocellulose Conduits for Blood Vessel Applications.
    Bao L; Tang J; Hong FF; Lu X; Chen L
    Carbohydr Polym; 2020 Jul; 239():116246. PubMed ID: 32414454
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Production of hydroxyapatite-bacterial nanocellulose scaffold with assist of cellulose nanocrystals.
    Niamsap T; Lam NT; Sukyai P
    Carbohydr Polym; 2019 Feb; 205():159-166. PubMed ID: 30446091
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bacterial nanocellulose as a new patch material for closure of ventricular septal defects in a pig model.
    Lang N; Merkel E; Fuchs F; Schumann D; Klemm D; Kramer F; Mayer-Wagner S; Schroeder C; Freudenthal F; Netz H; Kozlik-Feldmann R; Sigler M
    Eur J Cardiothorac Surg; 2015 Jun; 47(6):1013-21. PubMed ID: 25064053
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biocompatibility evaluation of densified bacterial nanocellulose hydrogel as an implant material for auricular cartilage regeneration.
    Martínez Ávila H; Schwarz S; Feldmann EM; Mantas A; von Bomhard A; Gatenholm P; Rotter N
    Appl Microbiol Biotechnol; 2014 Sep; 98(17):7423-35. PubMed ID: 24866945
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Production and characterization of Komagataeibacter xylinus SGP8 nanocellulose and its calcite based composite for removal of Cd ions.
    Bhattacharya A; Sadaf A; Dubey S; Singh RP; Khare SK
    Environ Sci Pollut Res Int; 2021 Sep; 28(34):46423-46430. PubMed ID: 32335838
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Implantation of air-dried bacterial nanocellulose conduits in a small-caliber vascular prosthesis rabbit model.
    Bao L; Hong FF; Li G; Hu G; Chen L
    Mater Sci Eng C Mater Biol Appl; 2021 Mar; 122():111922. PubMed ID: 33641915
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The biopolymer bacterial nanocellulose as drug delivery system: investigation of drug loading and release using the model protein albumin.
    Müller A; Ni Z; Hessler N; Wesarg F; Müller FA; Kralisch D; Fischer D
    J Pharm Sci; 2013 Feb; 102(2):579-92. PubMed ID: 23192666
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel bilayer bacterial nanocellulose scaffold supports neocartilage formation in vitro and in vivo.
    Martínez Ávila H; Feldmann EM; Pleumeekers MM; Nimeskern L; Kuo W; de Jong WC; Schwarz S; Müller R; Hendriks J; Rotter N; van Osch GJ; Stok KS; Gatenholm P
    Biomaterials; 2015 Mar; 44():122-33. PubMed ID: 25617132
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neuronal cells' behavior on polypyrrole coated bacterial nanocellulose three-dimensional (3D) scaffolds.
    Muller D; Silva JP; Rambo CR; Barra GM; Dourado F; Gama FM
    J Biomater Sci Polym Ed; 2013; 24(11):1368-77. PubMed ID: 23796037
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication of a Functionalized Magnetic Bacterial Nanocellulose with Iron Oxide Nanoparticles.
    Arias SL; Shetty AR; Senpan A; Echeverry-Rendón M; Reece LM; Allain JP
    J Vis Exp; 2016 May; (111):. PubMed ID: 27285589
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In situ biosynthesis of bacterial nanocellulose-CaCO3 hybrid bionanocomposite: One-step process.
    Mohammadkazemi F; Faria M; Cordeiro N
    Mater Sci Eng C Mater Biol Appl; 2016 Aug; 65():393-9. PubMed ID: 27157766
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural modification and characterization of bacterial cellulose-alginate composite scaffolds for tissue engineering.
    Kirdponpattara S; Khamkeaw A; Sanchavanakit N; Pavasant P; Phisalaphong M
    Carbohydr Polym; 2015 Nov; 132():146-55. PubMed ID: 26256335
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In situ synthesis of photocatalytically active hybrids consisting of bacterial nanocellulose and anatase nanoparticles.
    Wesarg F; Schlott F; Grabow J; Kurland HD; Heßler N; Kralisch D; Müller FA
    Langmuir; 2012 Sep; 28(37):13518-25. PubMed ID: 22925063
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation and characterization of reinforced papers using nano bacterial cellulose.
    Tabarsa T; Sheykhnazari S; Ashori A; Mashkour M; Khazaeian A
    Int J Biol Macromol; 2017 Aug; 101():334-340. PubMed ID: 28341173
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.